重庆市渝北八中学2023年八年级数学第一学期期末达标检测模拟试题【含解析】
展开注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.已知那么的值等于 ( )
A.B.C.D.
2.下列各式中,正确的是( )
A.
B.
C.
D.
3.如图,在▱ABCD中,AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为( )
A.2.6B.1.4C.3D.2
4.的平方根是( )
A.±16B.C.±2D.
5.已知如图,等腰中,于点,点是延长线上一点,点是线段上一点,下面的结论:①;②是等边三角形;③;④.其中正确的是( )
A.①②③B.①②④C.①③④D.①②③④
6.分式有意义,则x的取值范围是( )
A.B.C.D.一切实数
7.在折纸活动中,王强做了一张△ABC纸片,点D,E分别是AB,AC上的点,将△ABC沿着DE折叠压平,A与A1重合,且∠A1DB=90°,若∠A=50°,则∠CEA1等于( )
A.20°B.15°C.10°D.5°
8.计算的结果是( )
A.B.C.D.
9.一个正多边形,它的每一个外角都等于45°,则该正多边形是( )
A.正六边形B.正七边形C.正八边形D.正九边形
10.如果(x+y﹣4)2+=0,那么2x﹣y的值为( )
A.﹣3B.3C.﹣1D.1
二、填空题(每小题3分,共24分)
11.已知,,则的值为_________.
12.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.
13.如图,四边形中,,,则的面积为__________.
14.已知点,直线轴,且则点的坐标为__________.
15.如图1六边形的内角和为度,如图2六边形的内角和为度,则________.
16.已知等腰三角形一个外角的度数为,则顶角度数为____________.
17.如图,D是△ABC内部的一点,AD=CD,∠BAD=∠BCD,下列结论中,①∠DAC=∠DCA;②AB=AC;③BD⊥AC;④BD平分∠ABC.所有正确结论的序号是_____.
18.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(1,0),且∠AOB=30°点P为斜边OB上的一个动点,则PA+PC的最小值为_________.
三、解答题(共66分)
19.(10分)已知.
求:(1)的值;
(2)代数式的值.
20.(6分)如图,已知AB∥CD,AC平分∠DAB.求证:△ADC是等腰三角形.
21.(6分)如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.
(1)求证:AE=CF;
(2)求∠ACF的度数.
22.(8分)如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.
(1)若,判断是否为奇异三角形,并说明理由;
(2)若,,求的长;
(3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.
23.(8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
24.(8分)某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,已知随机抽查的教师人数为学生人数的一半,将收集的数据绘制成下列不完整的两种统计图.
(1)本次共调查了多少名学生?
(2)求学生步行所在扇形的圆心角度数.
(3)求教师乘私家车出行的人数.
25.(10分)如图,在中,是边上的高,,分别是和的角平分线,它们相交于点,.求的度数.
26.(10分)(1)图1是的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形;
(2)如图2,在正方形网格中,以点为旋转中心,将按逆时针方向旋转,画出旋转后的;
(3)如图3,在边长为1个单位长度的小正方形组成的网格中,点、、、都是格点,作关于点的中心对称图形.
参考答案
一、选择题(每小题3分,共30分)
1、B
【分析】由同底数幂的乘法的逆运算与幂的乘方的逆运算把变形后代入可得答案.
【详解】解:,
故选B.
【点睛】
本题考查的是同底数幂的逆运算与幂的乘方的逆运算,掌握逆运算的法则是解题的关键.
2、B
【分析】根据分式的基本性质分别进行化简即可.
【详解】解:A、 ,错误;
B、 ,正确;
C、 ,错误;
D、 ,错误.
故选:B.
【点睛】
本题主要考察了分式的基本性质,分式运算时要同时乘除和熟练应用约分是解题的关键.
3、B
【分析】由平行四边形ABCD中,BE平分∠ABC,可证得△BCE是等腰三角形,继而利用DE=CE-CD,求得答案.
【详解】解:四边形是平行四边形,
,,
.
平分,
,
,
,
.
故选:.
【点睛】
此题考查了平行四边形的性质,能证得△BCE是等腰三角形是解此题的关键.
4、B
【分析】先计算,再根据平方根的定义即可得到结论.
【详解】解:∵,
∴2的平方根是,
故选:B.
【点睛】
本题考查平方根的定义,注意本题求的是的平方根,即2的平方根.
5、A
【分析】①连接BO,根据等腰三角形的性质可知AD垂直平分BC,从而得出BO=CO,又OP=OC,得到BO=OP,再根据等腰三角形的性质可得出结果;
②证明∠POC=60°,结合OP=OC,即可证得△OPC是等边三角形;
③在AC上截取AE=PA,连接PE,先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP;
④根据∠APO=∠ABO,∠DCO=∠DBO,因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断.
【详解】解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°-∠BAD=30°,
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°-(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故②正确;
③如图2,在AC上截取AE=PA,连接PE,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,在△OPA和△CPE中,,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP,故③正确;
④由①中可得,∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故④不正确;
故①②③正确.
故选:A.
【点睛】
本题主要考查了等腰三角形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.
6、B
【解析】试题分析:分母为零,分式无意义;分母不为零,分式有意义.
解:由分式有意义,得
x﹣1≠1.
解得x≠1,
故选B.
考点:分式有意义的条件.
7、C
【分析】根据翻折变换的性质可得∠A1DE=∠ADE,∠A1ED=∠AED,再根据三角形的内角和等于180°求出∠A1ED和∠AED,然后利用平角等于180°即可求解∠CEA1.
【详解】解: ∵△ABC沿着DE折叠压平,A与A1重合,且∠A1DB=90°,
∴∠A1DE=∠ADE= ,∠A1ED=∠AED,
∵∠A=50°,
∴∠A1ED=∠AED=,
∴∠CEA1=.
故选:C.
【点睛】
本题考查三角形的内角和定理,翻折变换的性质,熟练进行整体思想的利用使得求解更简便.
8、D
【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.
【详解】解:,
故选D.
【点睛】
本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.
9、C
【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.
【详解】解:360÷45=8,所以这个正多边形是正八边形.
故选C.
10、C
【解析】根据非负数的性质列出关于x、y的二元一次方程组求解得到x、y的值,再代入代数式进行计算即可得解.
【详解】根据题意得,,
由②得,y=3x③,
把③代入①得,x+3x﹣4=0,
解得x=1,
把x=1代入③得,y=3,
所以方程组的解是,
所以2x﹣y=2×1﹣3=﹣1.
故选C.
二、填空题(每小题3分,共24分)
11、
【分析】先把二次根式进行化简,然后把,,代入计算,即可得到答案.
【详解】解:
=,
∵,,
∴原式=;
故答案为:.
【点睛】
本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.
12、6; 3×1.
【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.
【详解】解: 如图,
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=3,
∴A2B1=3,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴a2=2a1=6,
a3=4a1,
a4=8a1,
a5=16a1,
以此类推:a2019=1a1=3×1
故答案是:6;3×1.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.
13、10
【分析】过点D作DE⊥AB与点E,根据角平分线的性质可得CD=DE,再用三角形面积公式求解.
【详解】解:如图,过点D作DE⊥AB与点E,
∵,
∴BD平分∠ABC,
∵∠BCD=90°,
∴CD=DE=5,
∵AB=4,
∴△ABD的面积=×AB×DE=×4×5=10.
故答案为:10.
【点睛】
本题考查了角平分线的性质和三角形面积求法,角平分线上的点到角两边距离相等,根据题意作出三角形的高,从而求出面积.
14、
【分析】由AB∥y轴可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的横坐标可能的情况.
【详解】解:∵,AB∥y轴,
∴点B的横坐标为3,
∵AB=6,
∴点B的纵坐标为-2-6=-8或-2+6=4,
∴B点的坐标为(3,-8)或(3,4).
故答案为:(3,-8)或(3,4).
【点睛】
本题主要考查了坐标与图形的性质.理解①平行于y轴的直线上的点的横坐标相等;②一条直线上到一个定点为定长的点有2个是解决此题的关键.
15、0
【分析】将两个六边形分别进行拆分,再结合三角形的内角和和四边形的内角和计算即可得出答案.
【详解】如图1所示,将原六边形分成了两个三角形和一个四边形,
∴=180°×2+360°=720°
如图2所示,将原六边形分成了四个三角形
∴=180°×4=720°
∴m-n=0
故答案为0.
【点睛】
本题考查的是三角形的内角和和四边形的内角和,难度适中,解题关键是将所求六边形拆分成几个三角形和四边形的形式进行求解.
16、或
【分析】等腰三角形的一个外角等于,则等腰三角形的一个内角为72°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.
【详解】∵一个外角为,
∴三角形的一个内角为72°,
当72°为顶角时,其他两角都为、,
当72°为底角时,其他两角为72°、36°,
所以等腰三角形的顶角为或.
故答案为:或
【点睛】
本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.
17、①③④.
【分析】根据等腰三角形的性质和判定定理以及线段垂直平分线的性质即可得到结论.
【详解】解:∵AD=CD,
∴∠DAC=∠DCA,故①正确;
∵∠BAD=∠BCD,
∴∠BAD+∠DAC=∠BCD+∠DCA,
即∠BAC=∠BCA,
∴AB=BC,故②错误;
∵AB=BC,AD=DC,
∴BD垂直平分AC,故③正确;
∴BD平分∠ABC,故④正确;
故答案为:①③④.
【点睛】
本题主要考查了线段垂直平分线的性质和判定以及等腰三角形的判定和性质.
18、
【详解】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小.
∵DP=PA,∴PA+PC=PD+PC=CD.
∵B(1,),∴AB=,OA=1,∠B=60°.
由勾股定理得:OB=2.
由三角形面积公式得:×OA×AB=×OB×AM,∴AM=.∴AD=2×=1.
∵∠AMB=90°,∠B=60°,∴∠BAM=10°.
∵∠BAO=90°,∴∠OAM=60°.
∵DN⊥OA,∴∠NDA=10°.∴AN=AD=.
由勾股定理得:DN=.
∵C(1,0),∴CN=1-1-.
在Rt△DNC中,由勾股定理得:DC=.
∴PA+PC的最小值是.
三、解答题(共66分)
19、(1);(2)2019
【分析】(1)把x的值代入后,分母有理化化简即可;
(2)由得到,平方得,再把原式中x2用代换,化简整理即可求解.
【详解】(1)当时,
;
(2)∵,
∴,
∴,
∴,
.
【点睛】
本题考查二次根式的化简求值、整式的乘法运算,解答本题的关键是明确它们各自的计算方法.
20、证明见解析.
【分析】由平行线的性质和角平分线定义求出∠DAC=∠DCA,即可得出结论.
【详解】∵AB∥CD,
∴∠BAC=∠DCA.
∵AC平分∠DAB,
∴∠BAC=∠DAC,
∴∠DAC=∠DCA,
∴△ADC是等腰三角形.
【点睛】
此题考查等腰三角形的判定,平行线的性质,熟练掌握等腰三角形的判定和平行线的性质是解题的关键.
21、(1)证明见解析;(2)∠ACF=90°.
【解析】(1)根据△ABC是等边三角形,得出AB=BC,∠ABE+∠EBC=60°,再根据△BEF是等边三角形,得出EB=BF,∠CBF+∠EBC=60°,从而求出∠ABE=∠CBF,最后根据SAS证出△ABE≌△CBF,即可得出AE=CF;
(2)根据△ABC是等边三角形,AD是∠BAC的角平分线,得出∠BAE=30°,∠ACB=60°,再根据△ABE≌△CBF,得出∠BCF=∠BAE=30°,从而求出∠ACF的度数.
【详解】(1)证明:∵△ABC是等边三角形,
∴AB=BC,∠ABE+∠EBC=60 °.
∵△BEF是等边三角形,
∴EB=BF,∠CBF+∠EBC=60 °.
∴∠ABE=∠CBF.
在△ABE和△CBF中, ,
∴△ABE≌△CBF(SAS).
∴AE=CF;
(2)∵等边△ABC中,AD是∠BAC的角平分线,
∴∠BAE=∠BAC=30 °,∠ACB=60°.
∵△ABE≌△CBF,
∴∠BCF=∠BAE=30 °.
∴∠ACF=∠BCF+∠ACB=30 °+60 °=90 °.
【点睛】
此题考查了等边三角形的性质和全等三角形的判定,关键是根据等边三角形的性质得出∠ABE=∠CBF,掌握全等三角形的判定,角平分线的性质等知识点.
22、(1)是,理由见解析;(2);(3)
【解析】(1)根据奇异三角形的概念直接进行判断即可.
(2)根据勾股定理以及奇异三角形的概念直接列式进行计算即可.
(3)根据△ABC是奇异三角形,且b=2,得到,由题知:AD=CD=1,且BC=BD=a,根据△ADB是奇异三角形,则或,分别求解即可.
【详解】(1)∵, ,
∴,
∴
即△ABC是奇异三角形.
(2)∵∠C=90°,
∴
∵
∴
,
∴
解得:.
(3)∵△ABC是奇异三角形,且b=2
∴
由题知:AD=CD=1,BC=BD=a
∵△ADB是奇异三角形,且,
∴或
当时,
当时,与矛盾,不合题意.
【点睛】
考查勾股定理以及奇异三角形的定义,读懂题目中奇异三角形的定义是解题的关键.
23、(1)120件;(2)150元.
【解析】试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
由题意可得:,解得,经检验是原方程的根.
(2)设每件衬衫的标价至少是元.
由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
由题意可得:
解得:,所以,,即每件衬衫的标价至少是150元.
考点:1、分式方程的应用 2、一元一次不等式的应用.
24、(1)60名;(2)72°;(3)15
【分析】(1)利用出行方式为骑自行车的学生人数除以其所占学生调查总人数的百分比即可求出结论;
(2)利用学生步行的人数除以学生调查总人数再乘360°即可求出结论;
(3)求出教师的调查总人数减去步行、乘公交车、骑自行车的教师的人数即可求出结论.
【详解】解:(1)15÷25%=60(名)
答:本次共调查了60名学生.
(2)
答:学生步行所在扇形的圆心角为72°
(3)
答:教师乘私家车出行人数为15人.
【点睛】
此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.
25、.
【分析】根据角平分线的性质,由,得到,然后得到∠C,由余角的性质,即可求出答案.
【详解】解:,分别是和的角平分线,
,.
,
,
.
是边上的高
,
.
【点睛】
本题考查了角平分线的性质,三角形的内角和定理,以及余角的性质,解题的关键是熟练掌握所学的知识,正确求出,从而求出答案.
26、(1)见解析;(2)见解析;(3)见解析.
【分析】(1)根据中心对称图形的定义,画出图形,即可;
(2)以点为旋转中心,将按逆时针方向旋转的对应点画出来,再顺次连接起来,即可;
(3)作各个顶点关于点的中心对称后的对应点,再顺次连接起来,即可得到答案.
【详解】(1)如图所示;
(2)如图所示;
(3)如图所示;
【点睛】
本题主要考查中心对称图形和图形的旋转变换,掌握中心对称图形的定义,是解题的关键.
重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末达标检测试题【含解析】: 这是一份重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末达标检测试题【含解析】,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,如果点,如图,若,则下列结论错误的是等内容,欢迎下载使用。
重庆市渝中学区巴蜀中学2023年八年级数学第一学期期末达标检测试题【含解析】: 这是一份重庆市渝中学区巴蜀中学2023年八年级数学第一学期期末达标检测试题【含解析】,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知,计算的结果是,下列运算不正确的是等内容,欢迎下载使用。
重庆市渝北中学2023-2024学年八年级数学第一学期期末综合测试模拟试题【含解析】: 这是一份重庆市渝北中学2023-2024学年八年级数学第一学期期末综合测试模拟试题【含解析】,共19页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。