![2024年中考数学二轮专题复习 函数实际问题专项练习07(含答案)01](http://img-preview.51jiaoxi.com/2/3/15658670/0-1714105489139/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年中考数学二轮专题复习 函数实际问题专项练习07(含答案)02](http://img-preview.51jiaoxi.com/2/3/15658670/0-1714105489228/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年中考数学二轮专题复习 函数实际问题专项练习07(含答案)03](http://img-preview.51jiaoxi.com/2/3/15658670/0-1714105489282/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年中考数学二轮专题复习 函数实际问题专项练习07(含答案)
展开一、选择题
某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了eq \f(1,5),如果加满汽油后汽车行驶的路程为x km,邮箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是( )
A.y=0.12x,x>0
B.y=60-0.12x,x>0
C.y=0.12x,0≤x≤500
D.y=60-0.12x,0≤x≤500
某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为( )
A.xy=3500 B.x=3500y C.y=eq \f(3500,x) D.y=eq \f(1750,x)
某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y元与售价x元之间的函数关系为( )
A.y=-10x2-560x+7 350
B.y=-10x2+560x-7 350
C.y=-10x2+350x
D.y=-10x2+350x-7 350
甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
A.乙摩托车的速度较快
B.经过eq \f(3,10)小时甲摩托车行驶到A,B两地的中点
C.经过eq \f(1,4)小时两摩托车相遇
D.当乙摩托车到达A地时,甲摩托车距离A地16eq \f(2,3)km
某种气球内充满了一定质量的气体.当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内气体的气压大于120 kPa时,气球将爆炸.为了安全,气体的体积应该( )
A.不大于eq \f(5,4) m3 B.小于eq \f(5,4) m3 C.不小于eq \f(4,5) m3 D.小于eq \f(4,5) m3
二、填空题
下面是用棋子摆成的“上”字:按照图中规律继续摆下去,第n个“上”字需用棋子数s与n之间的关系式为 .
某单位要建一个200 m2的矩形草坪,已知它的长是y m,宽是x m,则y与x之间的函数解析式为______________;若它的长为20 m,则它的宽为________m.
如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣eq \f(1,9)(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是 .
如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1 m,球路的最高点B(8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m).
三、解答题
某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=eq \f(k,v),其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).
(1)求k和m的值;
(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
海洋王国暑假期间推出了两套优惠方案:
①购买成人票两张以上(包括两张),则儿童票按6折出售;
②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.
(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;
(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
\s 0 答案
D
C
B;
C
C.
答案为:S=4n+2.
答案为:y=eq \f(200,x),10.
答案为:y=﹣eq \f(1,9)(x+6)2+4;
答案为:y=-eq \f(1,8)x2+2x+1;16.5.
解:(1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2元,
y1=(x-4)×5+80=5x+60;y2=4.5x+72;
(2)设y1>y2,即5x+60>4.5x+72,∴x>24,
当x>24整数时,选择优惠方法②;设y1=y2,
∴当x=24时,选择优惠方法①,②均可;
∴当4≤x<24整数时,选择优惠方法①;
(3)因为需要购买4个书包和12支水性笔,而12<24,
购买方案一:用优惠方法①购买,需5x+60=5×12+60=120元;
购买方案二:采用两种购买方式,用优惠方法①购买4个书包,需要4×20=80元,同时获赠4支水性笔;
用优惠方法②购买8支水性笔,需要8×5×90%=36元,共需80+36=116元,显然116<120,
最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.
解:(1)将(40,1)代入t=eq \f(k,v),得1=eq \f(k,40),解得k=40.
函数关系式为:t=eq \f(40,v).
当t=0.5时,0.5=eq \f(40,m),解得m=80.
所以,k=40,m=80.
(2)令v=60,得t=eq \f(40,60)=eq \f(2,3).
结合函数图象可知,汽车通过该路段最少需要eq \f(2,3)小时.
解:(1)S=-eq \f(1,2)x2+30x.
(2)∵S=-eq \f(1,2)x2+30x=-eq \f(1,2)(x-30)2+450,
且-eq \f(1,2)<0,∴当x=30时,S有最大值,最大值为450.
即当x为30 cm时,菱形风筝的面积最大,最大面积是450 cm2.
解:(1)当选择方案①时,y=350×)x×0.85=204x+2380
(2)当方案①费用高于方案8+0.6×240x=144x+2800
当选择方案②时,y=(350×8+240②时
144x+2800>204x+2380,解得x<7
当方案①费用等于方案②时
144x+2800=204x+2380,解得x=7
当方案①费用低于方案②时
144x+2800<204x+2380,解得x>7
故当0<x<7时,选择方案②
当x=7时,两种方案费用一样.
当x>7时,选择方案①
解:(1)当1≤x<50时,
Y=(x+40-30)(200﹣2x)=-2x2+180x+2000;
当50≤x≤90时,
Y=(90﹣30)(200﹣2x)=﹣120x+12000.
(2)当1≤x<50时,y=﹣2x2+180x+2000=-2(x﹣45)2+6050,
∵a=-2<0,
∴当x=45时,y有最大值,最大值为6050元;
当50≤x≤90时,y=﹣120x+12000,
∵k=﹣120<0,
∴y随x的增大而减小,
∴当x=50时,y有最大值,最大值为6000元.
综上可知,当x=45时,当天的销售利润最大,最大利润为6050元
(3)41;
2024年中考数学二轮专题复习 函数实际问题专项练习10(含答案): 这是一份2024年中考数学二轮专题复习 函数实际问题专项练习10(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年中考数学二轮专题复习 函数实际问题专项练习09(含答案): 这是一份2024年中考数学二轮专题复习 函数实际问题专项练习09(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年中考数学二轮专题复习 函数实际问题专项练习08(含答案): 这是一份2024年中考数学二轮专题复习 函数实际问题专项练习08(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。