2024年中考数学二轮专题复习 函数实际问题专项练习05(含答案)
展开一、选择题
有甲、乙两个大小不同的水桶,容量分别为x、y公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x、y的关系式是( )
A.y=20-x B.y=x+10 C.y=x+20 D.y=x+30
体育中考中,男生将进行1 000米跑步测试,王亮跑步速度v(米/分)与测试时间t(分)的函数图象是( )
心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为( )
A.y=﹣(x﹣13)2+59.9 B.y=﹣0.1x2+2.6x+31
C.y=0.1x2﹣2.6x+76.8 D.y=﹣0.1x2+2.6x+43
已知A、B两地相距4km,上午8:00时,亮亮从A地步行到B地,8:20时芳芳从B地出发骑自行车到A地,亮亮和芳芳两人离A地的距离S(km)与亮亮所用时间t(min)之间的函数关系如图所示,芳芳到达A地时间为( )
A.8∶30 B.8∶35 C.8∶40 D.8∶45
在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数解析式ρ=eq \f(m,V)(m为常数,m≠0),其图象如图所示,则m的值为( )
A.9 B.-9 C.4 D.-4
二、填空题
如图,A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,在行驶过程中,这列火车离A地的路程y(km)与行驶时间t(h)之间的函数关系式是_____
在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=_______.
如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线y=-x2+6x上,设OA=m(0
某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.
三、解答题
折线ABC是某人乘出租车所付的费用y(元)与乘车的里程数x(km)之间的函数关系的图像.
(1)乘车3 km和6 km各需付乘车费多少元?
(2)当x≥3时,求乘车费用y(元)与乘车的里程数x(km)之间的关系式;
(3)某乘客所付车费在14元~18元之间,求他乘车路程的范围.
某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:
(1)写出电流I与电阻R之间的函数解析式;
(2)如果一个用电器的电阻为5 Ω,其允许通过的最大电流是1 A,那么这个用电器接在这个闭合电路中,会不会烧毁?说明理由;
(3)若允许的电流不超过4 A时,那么电阻R的取值应该控制在什么范围?
某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.
(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;
(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?
汛期来临,水库水位不断上涨,经勘测发现,水库现在超过警戒线水量640万米3,设水流入水库的速度是固定的,每个泄洪闸速度也是固定的,泄洪时,每小时流入水库的水量16万米3,每小时每个泄洪闸泄洪14万米3,已知泄洪的前a小时只打开了两个泄洪闸,水库超过警戒线的水量y(万米3)与泄洪时间s(小时)的关系如图所示,根据图象解答问题:
(1)求a的值;
(2)求泄洪20小时,水库现超过警戒线水量;
(3)若在开始泄洪后15小时内将水库降到警戒线水量,问泄洪一开始至少需要同时打开几个泄洪闸?
某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.
(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;
(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;
(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?
\s 0 答案
D
C
D
C
A
答案为:y=200+120t(t≥0).
答案为:400
答案为:l=-2m2+8m+12.
答案为:22.
解:(1)10元,16元;
(2)y=2x+4,x≥3.
(3)5km~7km
解:(1)设I=eq \f(k,R),由图中曲线过(3,2)点,
所以2=eq \f(k,3),解得 k=6,
即函数关系式为 I=eq \f(6,R);
(2)从上一问可知,用电器最大能加的电压是6 V,
即其允许通过的最大电流是I=eq \f(6,5)=1.2 A>1 A,
所以该用电器接在这个电路中,会被烧毁;
(3)由I=eq \f(6,R)可知I=4时,R=1.5 Ω,
所以电阻应至少1.5 Ω.
解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为y=600-5x(0≤x<120);
(2)设果园多种x棵橙子树时,可使橙子的总产量为w,
则w=(600-5x)(100+x)=-5x2+100x+60000=-5(x-10)2+60500,
则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.
解:(1)(640-520)÷(14×2-16)=10,
∴a=10;
(2)如图所示:
设直线AB的解析式为y=kx+b,将(10,520)和(30,0)代入得:
10k+b=520; 30k+b=0
解得:k=-26; b=780
∴直线AB得解析式为y=-26x+780.
将x=20代入得:y=260.
答:求泄洪20小时,水库现超过警戒线水量为260万m3.
(3)设打开x个泄洪闸.
根据题意得:15×(14x-16)≥640.
解得:x≥4
所以x取5.
答:泄洪一开始至少需要同时打开5个泄洪闸.
解:(1)当0≤x≤30时,y=2.4;
当30≤x≤70时,设y=kx+b,
把(30,2.4),(70,2)代入得
,解得,
∴y=﹣0.01x+2.7;
当70≤x≤100时,y=2;
(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;
当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;
当70≤x≤100时,w=2x﹣(x+1)=x﹣1;
(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,
当x=30时,w′的最大值为32,不合题意;
当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,
当x=70时,w′的最大值为48,不合题意;
当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,
当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,
所以产量至少要达到80吨.
2024年中考数学二轮专题复习 函数实际问题专项练习10(含答案): 这是一份2024年中考数学二轮专题复习 函数实际问题专项练习10(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年中考数学二轮专题复习 函数实际问题专项练习09(含答案): 这是一份2024年中考数学二轮专题复习 函数实际问题专项练习09(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年中考数学二轮专题复习 函数实际问题专项练习08(含答案): 这是一份2024年中考数学二轮专题复习 函数实际问题专项练习08(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

