|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年四川省绵阳市安州区中考数学二模试卷(含解析)
    立即下载
    加入资料篮
    2024年四川省绵阳市安州区中考数学二模试卷(含解析)01
    2024年四川省绵阳市安州区中考数学二模试卷(含解析)02
    2024年四川省绵阳市安州区中考数学二模试卷(含解析)03
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年四川省绵阳市安州区中考数学二模试卷(含解析)

    展开
    这是一份2024年四川省绵阳市安州区中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    1.下列负数中,最大的数是( )
    A. −πB. −3C. − 2D. −2
    2.国务院新闻办公室2021年4月6日发布《人类减贫的中国实践》白皮书指出,改革开放以来,按照现行贫困标准计算,中国7.7亿农村贫困人口摆脱贫困,6098万贫困人口参加了城乡居民基本养老保险.将6098万用科学记数法表示为( )
    A. 6.098×103B. 0.6098×104C. 6.098×107D. 6.098×108
    3.下面几个几何体,从正面看到的形状是圆的是( )
    A. B. C. D.
    4.如图,l1//l2,∠1=35°,∠2=50°,则∠3的度数为( )
    A. 85°
    B. 95°
    C. 105°
    D. 115°
    5.2023年杭州亚运会期间,吉祥物琼琼、宸宸、莲莲因其灵动可爱的形象受到了大家的喜爱.为了提高销量,某店家推出了吉祥物套装礼盒,一个套装礼盒里包含1个吉祥物宸宸玩偶和2个其他吉祥物的钥匙扣.已知一个玩偶的进价为60元,一个钥匙扣的进价为20元,该店家计划用5000元购进一批玩偶和钥匙扣,使得刚好配套,设购进x个玩偶,y个钥匙扣,则下列方程组正确的是( )
    A. x=2y60x+20y=5000B. x=2y20x+60y=5000
    C. 2x=y60x+20y=5000D. 2x=y20x+60y=5000
    6.下列图形均为正多边形,恰有3条对称轴的图形是( )
    A. B. C. D.
    7.在某县中小学安全知识竞赛中,参加决赛的6个同学获得的分数分别为(单位:分):95、97、97、96、98、99,对于这6个同学的成绩下列说法正确的是( )
    A. 众数为95B. 极差为3C. 平均数为96D. 中位数为97
    8.如图,在等边△ABC中,BD是AC边上的中线,延长BC至点E,使CE=CD,若DE=4 3,则AB=( )
    A. 4 3
    B. 6
    C. 8
    D. 8 3
    9.关于x的不等式组6−3x<02x≤a恰好有3个整数解,则a满足( )
    A. a=10B. 10≤a<12C. 1010.如图,以线段AB为边作正方形ABCD,取AD的中点E,连接BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形HICB的面积为S2,则S1与S2的大小关系是( )
    A. S1>S2
    B. S1C. S1=S2
    D. 不能确定
    11.若一元二次方程x2−2x+m2−4=0的一个根是3,则m的值为( )
    A. 1B. −1C. 1或−1D. 1或0
    12.如图,在正方形ABCD中,E,F分别为边AB与AD上一点,连接CE,BF,交点为G,且CE⊥BF,连接DG,若DG=CD,则tan∠DGF的值为( )
    A. 34
    B. 12
    C. 33
    D. 23
    二、填空题:本题共6小题,每小题4分,共24分。
    13.因式分解:a(a−2)+1= ______.
    14.在坐标平面内,先将点M(−1,2)向右平移3个单位,再向下平移4个单位,得到点M′的坐标是______.
    15.二次根式 2x−13有意义,则x的取值范围是______.
    16.如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,sin∠ABC=25,BC=42cm,则高AD为______.
    17.新安街道某段道路改造工程,由甲、乙两个工程队合作30天可完成,若单独施工,甲工程队所用天数是乙工程队所用天数的2倍.甲工程队单独完成此项工程需要 天.
    18.已知两块相同的三角板如图所示摆放,点B、C、E在同一直线上,∠ABC=∠DCE=90°,∠ACB=30°,AB=2,将△ABC绕点C顺时针旋转一定角度α(0°<α<90°),如果在旋转的过程中△ABC有一条边与DE平行,那么此时△BCE的面积是______.
    三、计算题:本大题共1小题,共16分。
    19.(1)计算(−12)−2−(π−3)0+| 3−2|+2sin60°;
    (2)先化简,再求值:(x2−1x2−2x+1−1x)÷1x−1,其中x=−1.
    四、解答题:本题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
    20.(本小题12分)
    为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图).
    请根据图表信息解答下列问题:
    (1)a= ______,b= ______;
    (2)求扇形统计图中“B”项目所对应的扇形圆心角的度数;
    (3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表法或画树状图法求抽中的2名学生来自不同班级的概率.
    21.(本小题12分)
    某公司开发出一款新的节能产品.已知该产品的成本价为8元/件,该产品在正式投放市场前,通过代销点进行了为期一个月(30天)的试销售,售价为13元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的图象,图中的折线ABC表示日销量y(件)与销售时间x(天)之间的函数关系.
    (1)求y与x之间的函数解析式,并写出对应的x的取值范围;
    (2)若该节能产品的日销售利润为w(元),求w与x之间的函数解析式,并求出日销售利润不超过1950元的天数共有多少?
    22.(本小题12分)
    如图,平行四边形ABCD内一点E,满足ED⊥AD于D,延长DE交BC于F,且∠EBC=∠EDC,∠ECB=45°,找出图中一条与EB相等的线段,并加以证明.
    23.(本小题12分)
    如图,在△AOB中,AB=OB,点B在反比例函数的图象上,点A的坐标为(4,0),S△ABO=4,求点B所在的反比例函数解析式.
    24.(本小题12分)
    如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,且AD⊥DE于D,与⊙O交于点F.
    (1)判断AC是否是∠DAE的平分线?并说明理由;
    (2)连接OF与AC交于点G,当AG=GC=k时,求切线CE的长.
    25.(本小题14分)
    定义:点P(m,m)是平面直角坐标系内一点,将函数l的图象位于直线x=m左侧部分,以直线y=m为对称轴翻折,得到新的函数l′的图象,我们称函数l′的函数是函数l的相关函数,函数l′的图象记作F1,函数l的图象未翻折的部分记作F2,图象F1和F2合起来记作图象F.
    例如:函数l的解析式为y=x2−1,当m=1时,它的相关函数l′的解析式为y=−x2+3(x<1).
    (1)如图,函数l的解析式为y=−12x+2,当m=−1时,它的相关函数l′的解析式为y=______.
    (2)函数l的解析式为y=−3x,当m=0时,图象F上某点的纵坐标为−2,求该点的横坐标.
    (3)已知函数l的解析式为y=x2−4x+3,
    ①已知点A、B的坐标分别为(0,2)、(6,2),图象F与线段AB只有一个公共点时,结合函数图象,求m的取值范围;
    ②若点C(x,n)是图象F上任意一点,当m−2≤x≤5时,n的最小值始终保持不变,求m的取值范围(直接写出结果).
    答案和解析
    1.【答案】C
    【解析】解:∵−π>−3>−2>− 2,
    ∴−π<−3<−2<− 2,
    ∴这四个负数中最大的是− 2.
    故选:C.
    正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
    此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
    2.【答案】C
    【解析】解:6098万=60980000=6.098×107.
    故选:C.
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3.【答案】B
    【解析】解:
    A从正面看到的形状是正方形,不合题意;
    B从正面看到的形状是圆,符合题意;
    C从正面看到的形状是等腰三角形,不合题意;
    D从正面看到的形状是长方形,不合题意,
    故选:B.
    根据主视图的概念解答即可.
    此题考查三视图,关键是根据主视图的概念解答.
    4.【答案】B
    【解析】解:∵l1/​/l2,
    ∴∠1+∠2+∠3=180°,
    ∵∠1=35°,∠2=50°,
    ∴∠3=180°−∠1−∠2=95°.
    故选:B.
    首先根据平行线的性质可得出∠1+∠2+∠3=180°,据此可得出∠3的度数.
    此题主要考查了平行线的性质,解答此题的关键是准确识图,熟练掌握两直线平行,同旁内角互补.
    5.【答案】C
    【解析】解:∵一个套装礼盒里包含1个吉祥物宸宸玩偶和2个其他吉祥物的钥匙扣,
    ∴购进钥匙扣的数量是购进宸宸玩偶数量的2倍,
    ∴2x=y;
    ∵一个玩偶的进价为60元,一个钥匙扣的进价为20元,且店家共花费5000元,
    ∴60x+20y=5000.
    ∴根据题意可列出方程组2x=y60x+20y=5000.
    故选:C.
    利用总价=单价×数量,结合购进玩偶和钥匙扣数量间的关系,即可列出关于x,y的二元一次方程组,此题得解.
    本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
    6.【答案】A
    【解析】解:等边三角形有三条对称轴,
    正方形有4条对称轴,
    正五边形有5条对称轴,
    正六边形有6条对称轴,
    故选:A.
    根据正n边形的对称轴有n条进行解题即可.
    本题主要考查了轴对称图形的性质,熟练掌握正n边形的对称轴有n条是解题的关键.
    7.【答案】D
    【解析】解:把这6个同学的成绩从小到大排列为:95、96、97、97、98、99,处在第3名和第4名的成绩为97、97,
    ∴中位数为97,
    ∵得分为97的出现了两次,出现的次数最多,
    ∴众数为97,
    ∵得分最高为99,得分最低为95,
    ∴极差为99−95=4,
    平均数=95+96+97+97+98+996=97,
    ∴四个选项中只有D选项符合题意,
    故选:D.
    根据中位数,众数,平均数,极差的定义求解判断即可.
    本题主要考查了求中位数,众数,平均数和极差,熟知中位数,众数,平均数,极差的定义是解题的关键.
    8.【答案】C
    【解析】解:∵△ABC为等边三角形,
    ∴AC=AC=BC,∠ABC=∠ACB=60°,
    ∵BD是AC边上的中线,
    ∴BD⊥AC,AD=CD=12AC,∠ABD=∠CBD=30°,
    ∴AB=2AD,
    ∵CE=CD,
    ∴∠E=∠CDE,
    ∵∠ACB=∠E+∠CDE=2∠E,
    ∴60°=2∠E,
    ∴∠E=30°,
    ∠CBD=∠E=30°,
    ∴BD=DE=4 3,
    在Rt△ABD中,由勾股定理得:AB2−AD2=BD2,
    即(2AD)2−AD2=(4 3)2,
    解得:AD=4,
    ∴AB=2AD=8.
    故选:C.
    先由等边三角形的性质,得BD⊥AC,AD=CD=12AC,∠ABD=∠CBD=30°,再根据CE=CD,得∠E=∠CDE,进而得∠CBD=∠E=30°,则BD=DE=4 3,然后在Rt△ABD中,由勾股定理求出AB即可.
    此题主要考查了等边三角形的性质,等腰三角形的判定和性质,勾股定理等,熟练掌握等边三角形的性质,等腰三角形的判定和性质,灵活运用勾股定理进行计算是解决问题的关键.
    9.【答案】B
    【解析】解:由6−3x<0得:x>2,
    由2x≤a得:x≤a2,
    ∵不等式组恰好有3个整数解,
    ∴不等式组的整数解为3、4、5,
    ∴5≤a2<6,解得10≤a<12,
    故选:B.
    先分别求出每一个不等式的解集,然后根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”并结合不等式组有3个整数解,得出关于a的不等式求解即可.
    本题主要考查了解一元一次不等式组、不等式组的整数解等知识点,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.
    10.【答案】C
    【解析】解:∵四边形ABCD是正方形,
    ∴∠EAB=90°,
    设正方形ABCD的边长为2a,
    ∵E为AD的中点,
    ∴AE=a,
    在Rt△EAB中,由勾股定理得:BE= AE2+AB2= a2+(2a)2= 5a,
    ∵EF=BE,
    ∴EF= 5a,
    ∴AF=EF−AE= 5a−a=( 5−1)a,
    即AF=AH=( 5−1)a,
    ∴S1=AF×AH=( 5−1)a×( 5−1)a=6a2−2 5a2,S2=S正方形ABCD−S长方形ADIH=2a×2a−2a×( 5−1)a=6a2−2 5a2,
    即S1=S2,
    故选:C.
    设正方形ABCD的边长为2a,根据勾股定理求出BE,求出EF,求出AF,再根据面积公式求出S1与S2即可.
    本题考查了勾股定理和正方形的性质,能熟记正方形的性质是解此题的关键,注意:正方形的每个角都是90°,正方形的四边都相等.
    11.【答案】C
    【解析】解:设方程的另一个根为x,
    ∵一元二次方程x2−2x+m2−4=0的两个根是3和x,
    ∴x+3=2,3x=m2−4,
    ∴x=−1,m2=1,
    ∴m=±1,
    故选:C.
    对于一元二次方程ax2+bx+c=0(a≠0),若x1,x2是该方程的两个实数根,则x1+x2=−ba,x1x2=ca,设方程的另一个根为x,则x+3=2,3x=m2−4,据此求解即可.
    本题主要考查了一元二次方程根与系数的关系,正确记忆相关知识点是解题关键.
    12.【答案】B
    【解析】解:如图,连接DG,作DL⊥CE于点H,交BC于点L,
    ∵CE⊥BF,
    ∴DL⊥CE,
    ∴DL//BF,
    ∵DG=CD,DH⊥CG,
    ∴CH=GH,∠GDL=∠CDL,
    ∴∠DGF=∠GDL=∠CDL,
    ∴CLBL=CHGH=1,
    ∴CL=BL,
    ∵四边形ABCD是正方形,
    ∴BC=CD,∠LCD=90°,
    ∴CL=12BC=12CD,
    ∴tan∠DGF=tan∠CDL=CLCD=12,
    ∴tan∠DGF的值为12,
    故选:B.
    连接DG,作DL⊥CE于点H,交BC于点L,则DL//BF,由DG=CD,DH⊥CG得CH=GH,∠GDL=∠CDL,则∠DGF=∠GDL=∠CDL,由平行线分线段成比例定理可以证明CL=BL,则CL=12BC=12CD,所以tan∠DGF=tan∠CDL=CLCD=12,得到问题的答案.
    此题考查正方形的性质、平行线的判定与性质、等腰三角形的性质、平行线分线段成比例定理、锐角三角函数等知识,正确地作出所需要的辅助线是解题的关键.
    13.【答案】(a−1)2
    【解析】解:a(a−2)+1=a2−2a+1
    =(a−1)2,
    故答案为:(a−1)2.
    根据完全平方公式进行分解,即可解答.
    本题考查了因式分解−运用公式法,熟练掌握完全平方公式是解题的关键.
    14.【答案】(2,−2)
    【解析】解:∵点M(−1,2)向右平移3个单位,再向下平移4个单位,得到点M′,
    ∴M′(−1+3,2−4),
    即M′(2,−2).
    故答案为:(2,−2).
    根据平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减可直接计算出B的坐标.
    本题主要考查点坐标的平移变换.关键是熟练掌握点平移的变化规律.
    15.【答案】x≥12
    【解析】解:∵二次根式 2x−13有意义,
    ∴2x−1≥0,
    解得:x≥12.
    故答案为:x≥12.
    直接利用二次根式有意义的条件分析得出答案.
    此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.
    16.【答案】2 21cm
    【解析】解:∵AB=AC,AD⊥BC,BC=42cm,
    ∴BD=CD=12BC=21(cm),
    在Rt△ABD中,sin∠ABC=ADAB=25,
    ∴设AD=2x,AB=5x,
    ∴BD= AB2−AD2= 21x(cm),
    ∴ 21x=21,
    ∴x= 21
    ∴AD=2 21(cm),
    故答案为:2 21cm.
    先根据等腰三角形的三线合一性质得到BD的长,再利用三角函数的定义求解即可.
    本题考查等腰三角形的性质、解直角三角形的应用,熟练掌握等腰三角形的性质是解答的关键.
    17.【答案】90
    【解析】解:设乙工程队单独完成此项工程需要x天,则甲工程队单独完成此项工程需要2x天,
    依题意得:302x+30x=1,
    解得:x=45,
    经检验,x=45是原方程的解,且符合题意,
    则2x=90.
    答:甲工程队单独完成此项工程需要90天.
    故答案为:90.
    设乙工程队单独完成此项工程需要x天,则甲工程队单独完成此项工程需要2x天,根据甲工程队完成的任务量+乙工程队完成的任务量=工程总量,即可得出关于x的分式方程,解之经检验后即可得出结论.
    本题考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.
    18.【答案】 3或3
    【解析】解:如图1,当AC/​/DE时,过点B作BF⊥EC延长线于点F,
    根据题意可知:∠DEC=60°,∠ACB=30°,
    ∵AC/​/DE,
    ∴∠ACF=∠DEC=60°,
    ∴∠BCF=30°,
    ∵AB=2,
    ∴BC= 3AB=2 3,
    ∴BF=12BC= 3,
    ∴△BCE的面积=12×CE⋅BF=12×2× 3= 3;
    如图2,当BC/​/DE时,过点B作BG⊥EC延长线于点G,
    ∵BC/​/DE,
    ∴∠BCG=∠DEC=60°,
    ∵BC= 3AB=2 3,
    ∴BG= 32BC=3,
    ∴△BCE的面积=12×CE⋅BG=12×2×3=3.
    综上所述:△BCE的面积是 3或3.
    故答案为: 3或3.
    分两种情况画图讨论:如图1,当AC/​/DE时,如图2,当BC/​/DE时,利用含30度角的直角三角形即可解决问题.
    本题考查了旋转的性质,平行线的性质,三角形的面积,含30度角的直角三角形的性质,关键是利用分类讨论思想解决问题.
    19.【答案】解:(1)(−12)−2−(π−3)0+| 3−2|+2sin60°
    =4−1+2− 3+2× 32
    =4−1+2− 3+ 3
    =5;
    (2)(x2−1x2−2x+1−1x)÷1x−1
    =[(x+1)(x−1)(x−1)2−1x]⋅(x−1)
    =(x+1x−1−1x)⋅(x−1)
    =x(x+1)−(x−1)x(x−1)⋅(x−1)
    =x2+x−x+1x
    =x2+1x,
    当x=−1时,原式=(−1)2+1−1=−2.
    【解析】(1)根据负整数指数幂、零指数幂、绝对值、特殊角的三角函数值可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    本题考查分式的化简求值、负整数指数幂、零指数幂、绝对值、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
    20.【答案】20 10
    【解析】解:(1)∵调查的学生总数为:5÷10%=50(人),
    ∴b=50×20%=10,
    a=50−(5+15+10)=20,
    故答案为:20,10;
    (2)∵1550×360°=108°,
    ∴扇形统计图中“B”项目所对应的扇形圆心角的度数为108°;
    (3)将七(1)的三人用A,B,C表示,七(2)的两人用D,E表示,列表如下:
    ∵共有20种等可能的结果,其中抽中的2名学生来自不同班级有12种可能的结果,
    ∴P(抽中的2名学生来自不同班级)=1220=35.
    (1)先求出调查的学生总数,将调查的学生总数乘以20%即可求出b的值,将调查的学生总数减去其他三个项目的人数即可求出a的值;
    (2)将“B”项目所在调查人数的比例乘以360°即可求出所对应的扇形圆心角的度数;
    (3)用列表法或画树状图法列举出所有等可能的结果,从中找出抽中的2名学生来自不同班级的结果,再利用概率公式求出即可.
    本题考查统计表,扇形统计图,列表法和树状图法求等可能事件的概率,能从统计图表中获取有用信息,掌握列表法和树状图法求等可能事件的概率的方法是解题的关键.
    21.【答案】解:(1)当1≤x≤10时,设y与x的函数关系式为y=kx+b(k≠0),
    则k+b=45010k+b=180,得k=−30b=480,
    即当1≤x≤10时,y与x的函数关系式为y=−30x+480,
    当10则10m+n=18030m+n=600,得m=21n=−30,
    即当10由上可得,y=−30x+480(1≤x≤10)21x−30(10(2)由题意可得,
    当1≤x≤10时,w=(13−8)y=5y=5×(−30x+480)=−150x+2400,
    当10即w=−150x+2400(1≤x≤10)105x−150(10当−150x+2400=1950时,得x=3,
    当105x−150=1950时,得x=20,
    ∵20−3+1=18,
    ∴日销售利润不超过1950元的共有18天.
    【解析】(1)分为1≤x≤10和10≤x≤30两段,分别设直线解析式,用待定系数法求出解析式;
    (2)根据“利润=(售价−成本价)×数量”先用含x的代数式表达出利润w,再求出利润为1950时的x的值,最后求出天数.
    本题以销售问题为背景,考查了待定系数法求一次函数的解析式和一次函数的应用,值得注意的是,本题的函数是分段函数,在表示解析式的时候要记得标注自变量x的取值范围.
    22.【答案】解:CD=BE.
    证明:如图,延长DE交BC于F,
    ∵AD/​/BC,ED⊥AD,
    ∴DF⊥BC,
    ∴∠BFE=∠DFC=90°,
    又∵∠ECB=45°,
    ∴∠FEC=∠ECB=45°,
    ∴FE=FC,
    ∵∠EBC=∠EDC,
    ∴△BEF≌△DCF(AAS),
    ∴CD=BE.
    【解析】延长DE,交BC于F,由平行四边形的性质可得到∠BFE=∠DFC=90°,由已知可推EF=FC,已知∠EBC=∠EDC,则可以利用AAS来判定△BEF≌△DCF,从而得到CD=BE.
    本题考查了平行四边形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.
    23.【答案】解:设点B所在的反比例函数解析式为:y=kx(x>0),
    过点B作BM⊥OA,垂足为M,
    ∵AB=OB,BM⊥OA,
    ∴OM=AM,
    ∴S△OBM=12S△AOB=2;
    ∵S△OBM=12‖k‖=2,且图象在第四象限,
    ∴k=−4.
    ∴点B所在的反比例函数解析式为:y=−4x(x>0)
    【解析】利用反比例函数中k值的几何意义,求出三角形OBM的面积就可推导出k值,写出解析式.
    本题考查了反比例函数k值的几何意义,本题的关键是求点B所在的反比例函数的关系式.
    24.【答案】解:(1)AC是∠DAE的平分线,理由为:
    证明:连接OC、FC,
    ∵DE是⊙O的切线,∴OC⊥DE,
    ∵AD⊥DE,
    ∴∠ADC=∠OCE=90°,
    ∴AD/​/OC,
    ∴∠2=∠ACO,
    ∵OA=OC,
    ∴∠1=∠ACO,
    ∴∠1=∠2,
    ∴AC是∠DAE的平分线;
    (2)∵AG=CG=k,OA=OC,
    ∴AC⊥OG,即AG⊥OF,
    又∠1=∠2,
    ∴∠AFG=∠AOG,
    ∴AF=AO,
    又AO=OF,
    ∴AF=AO=OF,
    ∴△AOF是等边三角形,
    ∴∠DAO=∠AOF=60°,
    ∴∠1=30°,∠COE=60°,
    又∠OCE=90°,∠E=30°,
    设⊙O的半径为r,在Rt△AOG中,
    ∵∠1=30°,
    ∴OG=12r,
    又AG=k,由勾股定理有:AG2+OG2=AO2,
    ∴k2+(r2)2=r2,
    解得:r=2 33k,
    ∴AB=4 33k,
    同理,在Rt△ADC中,AC=2k,
    ∵∠2=30°,
    ∴DC=12AC=k,
    ∴AD= 3k,
    在Rt△ADE中,∠E=30°,
    ∴AE=2AD=2 3k,
    ∴BE=AE−AB=2 3k−4 33k=2 33k.
    【解析】本题考查圆的综合问题,涉及切线的判定,等边三角形的判定与性质,勾股定理,含30度角的直角三角形的性质,需要学生灵活运用所学知识.
    (1)AC为∠DAE的角平分线,理由为:连接OC,FC,由DE为圆的切线,得到OC与DE垂直,利用同位角相等两直线平行得到AD与OC平行,利用两直线平行内错角相等,以及等边对等角得到∠1=∠2,即可得证;
    (2)根据题意得到AG=GC=k,易证△AOF是等边三角形,∠DAO=∠AOF=60°,∠1=30°,∠COE=60°,设⊙O的半径为r,在Rt△AOG中,由勾股定理可求出AB的长度,在Rt△ADE中,∠E=30°,所以AE=2AD=2 3k,从而可求出CE的长度.
    25.【答案】y=12x−4(x<−1)
    【解析】解:(1)根据题意,将函数l的解析式为y=−12x+2的图象沿直线y=−1翻折,设所得函数l′的解析式为y=kx+b,
    在y=−12x+2(x<−1)取两点(−2,3),(−4,4),可得到这两点关于直线y=−1的对称点(−2,−5)和(−4,−6),
    把(−2,−5)和(−4,−6)分别代入y=kx+b,
    得:−2k+b=−5−4k+b=−6,
    解得:k=12b=−4,
    ∴函数l′的解析式为y=12x−4(x<−1).
    (2)根据题意,可得图象F的解析式为:y=3x(x<0)−3x(x>0),
    当y=−2时,−3x=−2,3x=−2,
    解得:x=32,x=−32,
    ∴该点的横坐标为32或−32;
    (3)①根据题意,得图象F的解析式为:y=x2−4x+3(x≥m)−(x−2)2+2m+1(x当F2经过点(m,2)或当y=2时,x2−4x+3=2,
    解得:m=x=2± 3;
    当F1经过点(m,2)或当y=2时,−(m−2)2+2m+1=2,
    解得:m=1或5;
    当F1经过点A(0,2)时,−(−2)2+2m+1=2,
    解得:m=52;
    当F1经过点B(6,2)时,−(6−2)2+2m+1=2,
    解得:m=172;
    随着m的增大,图象F2的左端点先落在AB上(两个交点),F1的端点落在AB上(一个交点),图象F1经过点A(两个交点),图象F2的左端点再次落在AB上(一个交点),图象F1的端点落在AB上(无交点),图象F1经过点B(一个交点),
    ∴m的取值范围为:2− 3②∵n的最小值始终保持不变,
    ∴m≤2,
    ∵m−2≤x≤5,
    ∴−(m−2−2)2+2m+1≥−1,整理得:(m−5)2−11≤0,
    令(m−5)2−11=0,
    解得:m1=5− 11,m2=5+ 11,
    ∴5− 11≤m≤2.
    (1)运用“相关函数”的定义结合待定系数法解答即可;
    (2)先写出图象F的解析式,再分别将y=−2代入,解得x值,即可得出该点的横坐标;
    (3)①先根据“相关函数”的定义得出图象F的解析式,再运用二次函数图象和性质分类讨论:当F2经过点(m,2)时,当F1经过点(m,2)时,当F1经过点A(0,2)时,当F1经过点B(6,2)时,综合得出结论即可;
    ②由n的最小值始终保持不变,结合抛物线对称轴为直线x=2,可得出m≤2,再由m−2≤x≤5,结合二次函数增减性列不等式求解即可.
    本题属于二次函数综合题,考查了新定义在函数中的应用、抛物线的图象与线段的交点个数问题、二次函数的图象与性质、一元二次方程等知识点,数形结合、分类讨论、读懂定义并熟练掌握二次函数的图象与性质是解题的关键.项目
    A
    B
    C
    D
    人数/人
    5
    15
    a
    b
    A
    B
    C
    D
    E
    A
    (B,A)
    (C,A)
    (D,A)
    (E,A)
    B
    (A,B)
    (C,B)
    (D,B)
    (E,B)
    C
    (A,C)
    (B,C)
    (D,C)
    (E,C)
    D
    (A,D)
    (B,D)
    (C,D)
    (E,D)
    E
    (A,E)
    (B,E)
    (C,E)
    (D,E)
    相关试卷

    2023-2024学年四川省绵阳市安州区示范学校九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年四川省绵阳市安州区示范学校九年级(上)期末数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省广元市利州区中考数学二模试卷(含解析): 这是一份2023年四川省广元市利州区中考数学二模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省绵阳市中考数学二模试卷(含解析): 这是一份2023年四川省绵阳市中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map