|试卷下载
搜索
    上传资料 赚现金
    对数-【中职专用】高一数学(高教版2021•基础模块 下册)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      对数(原卷版).docx
    • 解析
      对数(解析版).docx
    对数-【中职专用】高一数学(高教版2021•基础模块 下册)01
    对数-【中职专用】高一数学(高教版2021•基础模块 下册)02
    对数-【中职专用】高一数学(高教版2021•基础模块 下册)03
    对数-【中职专用】高一数学(高教版2021•基础模块 下册)01
    对数-【中职专用】高一数学(高教版2021•基础模块 下册)02
    对数-【中职专用】高一数学(高教版2021•基础模块 下册)03
    还剩3页未读, 继续阅读
    下载需要50学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中职数学高教版(2021·十四五)基础模块 下册5.3 对数精品复习练习题

    展开
    这是一份中职数学高教版(2021·十四五)基础模块 下册5.3 对数精品复习练习题,文件包含专题03对数原卷版docx、专题03对数解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    1. 一般地,如果a(a>0,a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记做lgaN=b.其中a叫做对数的底数,N叫做真数.
    2. 以10为底的对数叫做常用对数,将lg10N记做lg N.
    以无理数e=2.718 28…为底数的对数叫做自然对数,将lgeN记做ln N.
    3.通常,我们称等式ab=N为指数式,称等式lgaN=b为对数式.
    4.对数的性质:
    (1)lga1=0(a>0且a≠1);
    (2)lgaa=1 (a>0且a≠1);
    (3)真数N>0,即零和负数没有对数;
    (4)algaN=N (a>0且a≠1).
    5. 对数的运算法则
    如果a>0且a≠1,M>0,N>0,那么
    (1)lga(MN)= lgaM+lgaN ;
    (2)lgaeq \f(M,N)= lgaM-lgaN ;
    (3)lgaMn= nlgaM (n∈R);
    6. 换底公式:lgbN=eq \f(lgaN,lgab) (a,b均大于零且不等于1)
    注意:
    对数式的化简、求值问题,要注意对数运算性质的逆向运用,但无论是正向运用还是逆向运用都要注意对数的底数必须相同.
    【题型1 将指数式化为对数式】
    【题型2 将对数式化为指数式】
    【题型3 对数运算性质的应用】
    【题型4换底公式的应用】
    【题型1 将指数式化为对数式】
    知识点:如果ab=N(a>0且a≠1),那么lgaN=b.
    例1. 将化为对数式正确的是( )
    A.B.C.D.
    例2. 若,则 .
    例3. 将下列指数式改写为对数式:
    (1);
    (2);
    (3);
    (4).
    【题型训练1】
    1.将化为对数式正确的是( )
    A.B.
    C.D.
    2. 把指数式化成对数式为 .
    3.将下列指数式改写为对数式:
    (1);
    (2);
    (3);
    (4).
    【题型2 将对数式化为指数式】
    知识点:如果lgaN=b(a>0且a≠1),那么ab=N.
    例4. 将化成指数式可表示为( )
    A.B.C.D.
    例5. 若,则( )
    A.B.
    C.D.
    例6. 将下列对数式改写为指数式:
    (1);
    (2);
    (3);
    (4).
    【题型训练2】
    1.下列对数式中,与指数式等价的是( )
    A.B.C.D.
    2.已知,则 .
    3.将下列对数式改写为指数式:
    (1);
    (2);
    (3);
    (4).
    【题型3 对数运算性质的应用】
    知识点:如果a>0且a≠1,M>0,N>0,那么
    (1)lga(MN)= lgaM+lgaN ;
    (2)lgaeq \f(M,N)= lgaM-lgaN ;
    (3)lgaMn= nlgaM (n∈R);
    例7.( )
    A.0B.1C.2D.3
    例8.已知,,则用a、b表示 .
    例9. 计算下列各式的值.
    (1)
    (2)
    (3).
    【题型训练3】
    1.( )
    A.1B.C.4D.6
    2.已知,则用表示为( )
    A.B.C.D.
    3.已知,,则 ( )
    A.B.C.D.
    4. 求下列各式的值:
    (1)
    (2)
    (3)
    (4)
    【题型4 换底公式的应用】
    知识点:换底公式 lgbN=eq \f(lgaN,lgab) (a,b均大于零且不等于1)
    例10.( )
    A.2B.1C.D.0
    例11.若,则的值约为( )
    A.1.322B.1.410C.1.507D.1.669
    例12. 已知,,用a,b表示为( )
    A.B.C.D.
    例13. 求下列各式的值;
    (1)
    (2)
    【题型训练4】
    1.( )
    A.8B.6C.4D.2
    2.已知 ,则 .(结果用 表示)
    3. 已知,,则 .
    4.求下列各式的值:
    (1)
    (2)
    (3)已知,试用表示.
    相关试卷

    高教版(2021·十四五)基础模块 下册5.4 对数函数精品课后练习题: 这是一份高教版(2021·十四五)基础模块 下册<a href="/sx/tb_c4036604_t7/?tag_id=28" target="_blank">5.4 对数函数精品课后练习题</a>,文件包含专题04对数函数原卷版docx、专题04对数函数解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    中职数学高教版(2021·十四五)基础模块 下册5.1 实数指数幂精品随堂练习题: 这是一份中职数学高教版(2021·十四五)基础模块 下册<a href="/sx/tb_c4036601_t7/?tag_id=28" target="_blank">5.1 实数指数幂精品随堂练习题</a>,文件包含专题01实数指数幂原卷版docx、专题01实数指数幂解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    中职数学5.3 对数优秀测试题: 这是一份中职数学<a href="/sx/tb_c4036603_t7/?tag_id=28" target="_blank">5.3 对数优秀测试题</a>,文件包含53对数分层作业原卷版docx、53对数分层作业解析版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        对数-【中职专用】高一数学(高教版2021•基础模块 下册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map