所属成套资源:2024-2025学年九年级数学上册高效讲与练(人教版)
数学人教版22.1.1 二次函数精品巩固练习
展开这是一份数学人教版22.1.1 二次函数精品巩固练习,文件包含专题03二次函数的最值与存在性问题20题原卷版docx、专题03二次函数的最值与存在性问题20题解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
(1)试猜想筝形的对角线有什么位置关系,然后用全等三角形的知识证明你的猜想;
(2)已知筝形ABCD的对角线AC,BD的长度为整数值,且满足AC+BD=6.试求当AC,BD的长度为多少时,筝形ABCD的面积有最大值,最大值是多少?
2.(2023•苏州一模)如图,在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点P从点A出发,以1cm/s的速度沿AB运动:同时,点Q从点B出发,2cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设动点运动的时间为t(s).
(1)当t为何值时,△PBQ的面积为2cm2;
(2)求四边形PQCA的面积S的最小值.
3.(2023春•汉寿县期中)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,﹣3),点D为直线OD与抛物线y=ax2+bx+c(a≠0)在x轴下方的一个交点,点P为此抛物线上的一个动点.
(1)求此抛物线的解析式;
(2)若直线OD为,求点D的坐标;
(3)在(2)的条件下,当点P在直线OD下方时,求△POD面积的最大值.
4.(2023•鄄城县一模)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.
(1)求这个二次函数及直线BC的表达式.
(2)过点P作PD∥y轴交直线BC于点D,求PD的最大值.
(3)点M为抛物线对称轴上的点,问在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠NMO为直角,若存在,请直接写出点N的坐标;若不存在,请说明理由.
5.(2023春•铜梁区校级期中)如图,已知二次函数y=x2﹣3x﹣4的图象与x轴交于B,C两点,与y轴交于点D,点A为抛物线的顶点,连接CD.
(1)求S△COD;
(2)如图1,点P在直线CD下方抛物线上的一个动点,过点P作PQ⊥CD交于点Q,过点P作PE∥x轴交CD于点E,求PE+PQ的最大值及此时点P的坐标;
(3)在(2)的条件下,将抛物线沿着射线DC方向平移个单位长度得到新抛物线y1,点M在新抛物线对称轴上运动,点N是平面内一点,若以B、P、M、N为顶点的四边形是以BM为边的菱形,请直接写出所有符合条件的点N的坐标,并选择其中一个点的坐标写出求解过程.
6.(2023•襄阳模拟)已知抛物线y=ax2+bx+c(a≠0)经过点M(﹣2,)和N(2,﹣)两点,且抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)若点M是抛物线y=ax2+bx+c的顶点,求抛物线解析式及A、B、C坐标;
(2)在(1)的条件下,若点P是A、C之间抛物线上一点,求四边形APCN面积的最大值及此时点P的坐标;
(3)若B(m,0),且1≤m≤3,求a的取值范围.
7.(2023•崇川区校级开学)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于A(﹣4,0)、B(2,0)两点,交y轴于点C,连接AC.
(1)求抛物线的解析式;
(2)点P为线段AC上方的抛物线上一动点,过P作PF⊥AC,当PF最大时,求出此时P点的坐标以及PF的最大值.
8.(2023•平潭县模拟)如图,已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点(点A在点B的左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请求出点M的坐标.
(3)如图1,P为直线BC上方的抛物线上一点,PD∥y轴交BC于D点,过点D作DE⊥AC于E点.设m=PD+DE,求m的最大值及此时P点坐标.
9.(2023•荔城区校级开学)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.
(1)求二次函数的表达式;
(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值.
10.(2023•阜新)如图,在平面直角坐标系中,二次函数y=﹣x2+bx﹣c的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.
(1)求这个二次函数的表达式.
(2)如图1,二次函数图象的对称轴与直线AC:y=x+3交于点D,若点M是直线AC上方抛物线上的一个动点,求△MCD面积的最大值.
(3)如图2,点P是直线AC上的一个动点,过点P的直线l与BC平行,则在直线l上是否存在点Q,使点B与点P关于直线CQ对称?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
11.(2023•防城区二模)如图1,已知抛物线y=ax2+bx+6与轴交于点A(2,0)和点B,与y轴交于点C,∠ABC=45°.
(1)求抛物线的解析式.
(2)如图2,点E为第二象限抛物线上一动点,EF⊥x轴与BC交于F,求EF的最大值,并说明此时△BCE的面积是否最大.
(3)已知点D(﹣3,10),E(2,10),连接DE.若抛物线y=ax2+bx+6向上平移k(k>0)个单位长度时,与线段DE只有一个公共点,请求出k的取值范围.
12.(2023•明水县模拟)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0),点P是抛物线上一个动点,且在直线BC的上方.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP'C,那么是否存在点P,使四边形POP'C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,使△BPC的面积最大,求出点P的坐标和△BPC的面积最大值.
13.(2023•晋中模拟)综合与探究
如图1,抛物线与x轴交于点A(1,0),B(5,0),与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图2,若P是直线BC下方抛物线上的一动点,连接PB,PC,过点P作 PD⊥BC于点D,求△PBC面积的最大值,并求出此时点P的坐标和线段PD的长;
(3)若E是抛物线上的任意一点,过点E作EQ∥y轴,交直线BC于点Q,抛物线上是否存在点E,使以E,Q,O,C为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.
14.(2022秋•曲周县期末)如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.
(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.
15.(2022秋•云阳县期末)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).
(1)求抛物线得解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求此时点P的坐标.
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上确定一点M,使得△ADM是直角三角形,写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.
16.(2023•湟中区校级开学)如图1,抛物线经过A(﹣5,0),B(1,0),C(0,5)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;
(3)如图2,点M是线段AC上的点(不与A、C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长,并求出MN的最大值.
17.(2023•太平区二模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;
(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.
18.(2023•昭平县二模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且OB=3OA=3.
(1)求这个二次函数的解析式;
(2)若点M是线段BC下方抛物线上的一个动点(不与点B,点C重合),过点M作直线MN⊥x轴于点D,交线段BC于点N.是否存在点M使得线段MN的长度最大,若存在,求线段MN长度的最大值,若不存在,请说明理由;
(3)当二次函数y=ax2+bx﹣3的自变量x满足t≤x≤t+1时,此函数的最大值与最小值的差为2,求出t的值.
19.(2023•芝罘区一模)如图,抛物线y=ax2+x+c经过坐标轴上A、B、C三点,直线y=﹣x+4过点B和点C.
(1)求抛物线的解析式;
(2)E是直线BC上方抛物线上一动点,连接BE、CE,求△BCE面积的最大值及此时点E的坐标;
(3)Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、B、C为顶点的四边形是平行四边形?若存在,请求出所有满足条形的点P坐标;若不存在,请说明理由.
20.(2023春•东莞市校级月考)如图,在平面直角坐标系中,抛物线与直线AB交于点A(0,﹣4),B(4,0).点P是直线AB下方抛物线上的一动点.
(1)求该抛物线的函数表达式;
(2)过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;
(3)连接PA、PB,是否存在点P,使得线段PC把△PAB的面积分成1:3两部分,如果存在,请求出点P的坐标;如果不存在,请说明理由.
相关试卷
这是一份人教版九年级上册21.2.4 一元二次方程的根与系数的关系同步训练题,文件包含专题02根的判别式与根与系数的关系30题原卷版docx、专题02根的判别式与根与系数的关系30题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份人教版九年级上册24.1.1 圆精品复习练习题,文件包含专题提升圆的切线的判定与性质30题原卷版docx、专题提升圆的切线的判定与性质30题解析版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份人教版九年级上册22.1.1 二次函数精品课时训练,文件包含专题01二次函数的图像与性质30题原卷版docx、专题01二次函数的图像与性质30题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。