数学七年级下册12.2 证明随堂练习题
展开
这是一份数学七年级下册12.2 证明随堂练习题,共22页。
本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.如图,a∥b,AB⊥AC,若∠2=40°,则∠1的度数为( )
A.50°B.45°C.40°D.30°
2.如图,a∥b,c∥d,则图中与∠1互补的角有( )
A.1个B.2个C.3个D.4个
3.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )
A.1个B.2个C.3个D.4个
4.如图,下列推理中正确的是( )
A.∵∠1=∠4,∴BC∥AD B.∵∠2=∠3,∴AB∥CD
C.∵∠BCD+∠ADC=180°,∴AD∥BC D.∵∠CBA+∠C=180°,∴BC∥AD
5.如图,由下列已知条件推出的结论中,正确的是( )
A.由∠1=∠5,可以推出AD∥BC
B.由∠2=∠6,可以推出AD∥BC
C.由∠1+∠4=90°,可以推出AB∥CD
D.由∠ABC+∠BCD=180°,可以推出AD∥BC
6.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )
A.∠B+∠BDC=180°B.∠3=∠4
C.∠5=∠BD.∠1=∠2
7.如图,在四边形ABCD中,连接BD,下列判断正确的是( )
A.若∠1=∠2,则AB∥CD B.若∠3=∠4,则AD∥BC
C.若∠A+∠ABC=180°,则AB∥CD D.若∠A=∠C,∠ABC=∠ADC,则AB∥CD
8.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:
①∠CEG=2∠DCB;
②∠ADC=∠GCD;
③CA平分∠BCG;
④∠DFB∠CGE.
其中正确的结论是( )
A.②③B.①②④C.①③④D.①②③④
9.如图,已知点P是射线ON上一动点(可在射线ON上运动),∠AON=30°,当∠A满足( )时,△AOP为钝角三角形.
A.0°<∠A<60° B.90°<∠A<180°
C.60°<∠A<90° D.0°<∠A<60°或90°<∠A<150°
10.如图,四边形ABCD中,∠ADC=∠ABC=90°,与∠ADC、∠ABC相邻的两外角平分线交于点E,若∠A=60°,则∠E的度数为( )
A.60°B.50°C.40°D.30°
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.如图,直线a,b被直线c所截,∠1=40°.要使a∥b,则∠2的度数应为 °.
12.如图,用符号语言表达定理“内错角相等,两直线平行”的推理形式:
∵ ,∴a∥b.
13.如图,下列条件中:
(1)∠B+∠BCD=180°;
(2)∠1=∠2;
(3)∠3=∠4;
(4)∠B=∠5,能判定AB∥CD的条件个数有 个.
14.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD= 时,CD∥AB.
15.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,
…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
若∠En=1度,那∠BEC等于 度.
16.如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=90°,则∠BFD= .
17.如图,线段AD、BE、CF相交于同一点O,连接AB、CD、EF,则∠A+∠B+∠C+∠D+∠E+∠F= .
18.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是 .
三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
19.(1)完成下面的推理说明:
已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.
求证:AB∥CD.
证明:∵BE、CF分别平分∠ABC和∠BCD(已知),
∴∠1∠ ,∠2∠ ( ).
∵BE∥CF( ),
∴∠1=∠2( ).
∴∠ABC∠BCD( ).
∴∠ABC=∠BCD(等式的性质).
∴AB∥CD( ).
(2)说出(1)的推理中运用了哪两个互逆的真命题.
20.图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.
(1)如图,EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.
小丽添加的条件:∠B+∠BDG=180°.
请你帮小丽将下面的证明过程补充完整.
证明:∵EF∥CD(已知)
∴∠BEF= ( )
∵∠B+∠BDG=180°(已知)
∴BC∥ ( )
∴∠CDG= ( )
∴∠BEF=∠CDG(等量代换)
(2)拓展:如图,请你从三个选项①DG∥BC,②DG平分∠ADC,③∠B=∠BCD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.
①条件: ,结论: (填序号).
②证明: .
21.如图,从①∠1=∠2②∠C=∠D③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论可以组成3个命题.
(1)这三个命题中,真命题的个数为 ;
(2)选择一个真命题,并且证明,(要求写出每一步的依据)
如图,已知 ,
求证:
证明:
22.如图,直线AB,CD被EF所截,∠1+∠2=180°,EM,FN分别平分∠BEF和∠CFE.
(1)判定EM与FN之间的位置关系,并证明你的结论;
(2)由(1)的结论我们可以得到一个命题:
如果两条平行线被第三条直线所截,那么一组内错角的角平分线互相 .
(3)由此可以探究并得到:
如果两条平行线被第三条直线所截,那么一组同旁内角的角平分线互相 .
23.(1)读读做做:
平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.
请根据上述思想解决教材中的问题:
如图①,AB∥CD,则∠B+∠D ∠E(用“>”、“=”或“<”填空);
(2)倒过来想:
写出(1)中命题的逆命题,判断逆命题的真假并说明理由.
(3)灵活应用
如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.
24.在数学课本中,有这样一道题:
如图1,AB∥CD,试用不同的方法证明∠B+∠C=∠BEC
(1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.
已知:如图1,∠B+∠C=∠BEC
求证:AB∥CD
证明:如图2,过点E,作EF∥AB
∴∠B=∠
∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知)
∴∠B+∠C=∠BEF+∠FEC(等量代换)
∴∠ =∠ (等式性质)
∴EF∥
∵EF∥AB
∴AB∥CD(平行于同一条直线的两条直线互相平行)
(2)如图3,已知AB∥CD,在∠BCD的平分线上取两个点M、N,使得∠BMN=∠BNM,求证:∠CBM=∠ABN.
(3)如图4,已知AB∥CD,点E在BC的左侧,∠ABE,∠DCE的平分线相交于点F.请直接写出∠E与∠F之间的等量关系.
参考答案
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.A
【分析】先根据垂直的性质可得∠3的度数,再根据平行线的性质求出∠1的度数.
【解析】∵AB⊥AC,
∴∠BAC=90°,
∴∠2+∠3=90°,
∵∠2=40°,
∴∠3=90°﹣40°=50°,
∵a∥b,
∴∠1=∠3=50°.
2.D
【分析】根据平行线的性质解答即可.
【解析】
∵a∥b,c∥d,
∴∠2=∠3,∠1+∠2=180°,
∴∠1+∠3=180°,
∵∠3=∠4,∠2=∠5,
∴∠1+∠4=180°,∠1+∠5=180°,
3.B
【分析】分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可.
【解析】①符合对顶角的性质,故本小题正确;
②两直线平行,内错角相等,故本小题错误;
③符合平行线的判定定理,故本小题正确;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.
4.C
【分析】结合图形分析相等或互补的两角之间的关系,根据平行线的判定方法判断.
【解析】A、∵∠1=∠4,∴AB∥CD,故选项错误;
B、∵∠2=∠3,∴BC∥AD,故选项错误;
D、∵∠BCD+∠ADC=180°,∴AD∥BC,故选项正确;
C、∵∠CBA+∠C=180°,∴AB∥CD,故选项错误.
5.B
【分析】根据平行线的判定定理对各选项进行逐一判断即可.
【解析】A、∵∠1=∠5,∴AB∥CD,故本选项错误;
B、∵∠2=∠6,∴AD∥BC,故本选项正确;
C、由∠1+∠4=90°无法证明AB∥CD,故本选项错误;
D、∵∠ABC+∠BCD=180°,∴AB∥CD,故本选项错误.
6.D
【分析】A、利用同旁内角互补两直线平行,得到AB与CD平行,本选项不合题意;
B、利用内错角相等两直线平行,得到AB与CD平行,本选项不合题意;
C、利用内错角相等两直线平行,得到AB与CD平行,本选项不合题意;
D、利用内错角相等两直线平行,得到AC与BD平行,本选项符合题意.
【解析】A、∵∠B+∠BDC=180°,
∴AB∥CD,本选项不合题意;
B、∵∠3=∠4,
∴AB∥CD,本选项不合题意;
C、∵∠5=∠B,
∴AB∥CD,本选项不合题意;
D、∵∠1=∠2,
∴AC∥BD,本选项符合题意.
7.D
【分析】根据平行线的判定逐个判断即可.
【解析】A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;
B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;
C、根据∠A+∠ABC=180°能不能推出AB∥CD,故本选项不符合题意;
D、根据∠A=∠C,∠ABC=∠ADC,可得∠A+∠ADC=180°,能推出AB∥CD,故本选项符合题意.
8.B
【分析】①正确.利用平行线的性质证明即可.
②正确.首先证明∠ECG=∠ABC,再利用三角形的外角的性质解决问题即可.
③错误.假设结论成立,推出不符合题意即可.
④正确.证明∠DFB=45°即可解决问题.
【解析】∵EG∥BC,
∴∠CEG=∠BCA,
∵CD平分∠ACB,
∴∠BCA=2∠DCB,
∴∠CEG=2∠DCB,故①正确,
∵CG⊥EG,
∴∠G=90°,
∴∠GCE+∠CEG=90°,
∵∠A=90°,
∴∠BCA+∠ABC=90°,
∵∠CEG=∠ACB,
∴∠ECG=∠ABC,
∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,
∴∠ADC=∠GCD,故②正确,
假设AC平分∠BCG,则∠ECG=∠ECB=∠CEG,
∴∠ECG=∠CEG=45°,显然不符合题意,故③错误,
∵∠DFB=∠FCB+∠FBC(∠ACB+∠ABC)=45°,∠CGE=45°,
∴∠DFB∠CGE,故④正确,
9.D
【分析】当两角的和小于90°或一个角大于90°时三角形是一个钝角三角形,由此即可得出结论.
【解析】∵当∠A与∠O的和小于90°时,三角形为钝角三角形,
∴0°<∠A<60°,
∵当∠A大于90°时候此三角形为钝角三角形,
∴90°<∠A<150°.
综上所述,0°<∠A<60°或90°<∠A<150°.
10.D
【分析】运用四边形的内角和等于360°,可求∠DCB的度数,再利用角平分线的性质可求∠E的度数.
【解析】∵∠ADC=∠ABC=90°,∠A=60°,
∴∠C=360°﹣90°﹣90°﹣60°=120°,
∵∠ADC、∠ABC相邻的两外角平分线交于点E,
∴∠CDE=∠CBE=45°,
∴∠E=120°﹣45°﹣45°=30°
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11. 140 °.
【分析】根据∠3和∠1的是邻补角可求∠3,再根据两直线平行,同位角相等可得∠2.
【解析】∠3=180°﹣∠1=180°﹣40°=140°,
∵a∥b,
∴∠2=∠3=140°.
故答案为:140.
12. ∵ ∠4=∠1
【分析】两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
【解析】∵∠4=∠1,
∴a∥b.
故答案为:∠4=∠1.
13.
【分析】根据平行线的判定定理即可判断.
【解析】(1)∠B+∠BCD=180°,则AB∥CD;
(2)∠1=∠2,则AD∥BC;
(3)∠3=∠4,则AB∥CD;
(4)∠B=∠5,则AB∥CD,
故能判定AB∥CD的条件个数有3个.
故答案为:3.
14. 30°或150°
【分析】分两种情况,根据CD∥AB,利用平行线的性质,即可得到∠BAD的度数.
【解析】如图所示:当CD∥AB时,∠BAD=∠D=30°;
如图所示,当AB∥CD时,∠C=∠BAC=60°,
∴∠BAD=60°+90°=150°;
故答案为:150°或30°.
15.
【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠CE1B=∠ABE1+∠DCE1∠ABE∠DCE∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2∠ABE1∠DCE1∠CE1B∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C∠BEC;…据此得到规律∠En∠BEC,最后求得∠BEC的度数.
【解析】如图①,过E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠1,∠C=∠2,
∵∠BEC=∠1+∠2,
∴∠BEC=∠ABE+∠DCE;
如图②,∵∠ABE和∠DCE的平分线交点为E1,
∴∠CE1B=∠ABE1+∠DCE1∠ABE∠DCE∠BEC.
∵∠ABE1和∠DCE1的平分线交点为E2,
∴∠BE2C=∠ABE2+∠DCE2∠ABE1∠DCE1∠CE1B∠BEC;
如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,
∴∠BE3C=∠ABE3+∠DCE3∠ABE2∠DCE2∠CE2B∠BEC;
…
以此类推,∠En∠BEC.
∴当∠En=1度时,∠BEC等于2n度.
故答案为:2n.
16. 45° .
【分析】根据平行线的性质和角平分线的性质,可以求得∠BFD的度数,本题得以解决.
【解析】∵AB∥CD,
∴∠ABE=∠4,∠1=∠2,
∵∠BED=90°,∠BED=∠4+∠EDC,
∴∠ABE+∠EDC=90°,
∵BF平分∠ABE,DF平分∠CDE,
∴∠1+∠3=45°,
∵∠5=∠2+∠3,
∴∠5=∠1+∠3=45°,
即∠BFD=45°,
故答案为:45°.
17. 360° .
【分析】根据一周角等于360°以及对顶角相等可得以O为顶点的三个内角的和为180°,再根据三角形内角和定理解答即可.
【解析】如图所示,
∵∠1+∠2+∠3=180°,∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2+∠3)=3×180°=540°,
∴∠A+∠B+∠C+∠D+∠E+∠F=540°﹣180°=360°.
故答案为:360°.
18. 六 .
【分析】首先设多边形的边数为n,多加的内角度数为α,则可得方程(n﹣2)•180°=840°﹣α,由于多边形内角和应是180°的倍数与840°=4×180°+120°,即可求得答案.
【解析】设多边形的边数为n,多加的内角度数为α,则
(n﹣2)•180°=840°﹣α,
∵840°=4×180°+120°,多边形内角和应是180°的倍数,
∴同学多加的一个内角为120°,
∴这是4+2=6边形的内角和,
∴这个多边形的边数是6.
故答案为:六.
三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
19.
【分析】(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC=∠BCD,再根据平行线的判定,即可得出AB∥CD;
(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.
【解析】(1)∵BE、CF分别平分∠ABC和∠BCD(已知)
∴∠1∠ABC,∠2∠BCD(角平分线的定义)
∵BE∥CF(已知)
∴∠1=∠2(两直线平行,内错角相等)
∴∠ABC∠BCD(等量代换)
∴∠ABC=∠BCD(等式的性质)
∴AB∥CD(内错角相等,两直线平行)
故答案为:ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;
(2)两个互逆的真命题为:
两直线平行,内错角相等;内错角相等,两直线平行.
20.
【分析】(1)根据平行线的判定定理和性质定理解答;
(2)根据真命题的概念写出命题的条件和结论,根据平行线的判定定理和性质定理、角平分线的定义解答.
【解析】(1)证明:∵EF∥CD(已知),
∴∠BEF=∠BCD(两直线平行,同位角相等),
∵∠B+∠BDG=180°(已知),
∴BC∥DG(同旁内角互补,两直线平行),
∴∠CDG=∠BCD(两直线平行,内错角相等),
∴∠BEF=∠CDG(等量代换);
(2)①条件:DG∥BC,∠B=∠BCD(答案不唯一),
结论:DG平分∠ADC,
②证明:∵DG∥BC,
∴∠ADG=∠B,∠CDG=∠BCD,
∵∠B=∠BCD,
∴∠ADG=∠CDG,即DG平分∠ADC.
故答案为:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;
(2)①、①③;②,
∵DG∥BC,
∴∠ADG=∠B,∠CDG=∠BCD,
∵∠B=∠BCD,
∴∠ADG=∠CDG,即DG平分∠ADC.
21.
【分析】(1)直接利用平行线的判定与性质得出题设和结论的正确性;
(2)根据同位角相等,两直线平行得出DB∥EC,DF∥AC,然后根据平行线的性质得出结论.
【解析】(1)由①②,得③;由①③,得②;由②③,得①;均正确,
故答案为3
(2)如图所示:
∵∠1=∠2,∠1=∠3(已知),
∴∠3=∠2(等量代换),
∴DB∥EC(同位角相等,两直线平行),
∴∠D=∠4(两直线平行,同位角相等),
∵∠C=∠D(已知),
∴∠4=∠C(等量代换),
∴DF∥AC(内错角相等,两直线平行),
∴∠A=∠F(两直线平行,内错角相等).
故答案为:①∠1=∠2,②∠C=∠D;∠A=∠F;
22.
【分析】(1)由∠1+∠2=180°可得出∠1=∠EFD,由“同位角相等,两直线平行”可得出AB∥CD,再由平行线的性质即可得出∠BEF=∠CFE,进而得出∠3=∠4,依据“内错角相等,两直线平行”即可证出AB∥CD;
(2)结合(1)的结论即可得出命题:如果两条直线平行,那么内错角的角平分线互相平行;
(3)根据“两直线平行,同旁内角互补”结合角平分线的性质即可得出命题:如果两条直线平行,那么同旁内角的角平分线互相垂直.
【解析】(1)EM∥FN.
证明:∵∠1+∠2=180°,∠EFD+∠2=180°,
∴∠1=∠EFD,
∴AB∥CD,
∴∠BEF=∠CFE.
∵EM,FN分别平分∠BEF和∠CFE,
∴∠3=∠4,
∴EM∥FN.
(2)由(1)可知EM∥FN,
∴可得出命题:如果两条直线平行,那么内错角的角平分线互相平行.
故答案为:平行.
(3)由“两直线平行,同旁内角互补”可得出:
如果两条直线平行,那么同旁内角的角平分线互相垂直.
故答案为:垂直
23.
【分析】(1)过E作EF∥AB,则EF∥AB∥CD,由平行线的性质得出∠B=∠BEF,∠D=∠DEF,即可得出结论;
(2)过E作EF∥AB,则∠B=∠BEF,证出∠D=∠DEF,得出EF∥CD,即可得出结论;
(3)过点N作NG∥AB,交AM于点G,则NG∥AB∥CD,由平行线的性质得出∠BAN=∠ANG,∠GNC=∠NCD,由三角形的外角性质得出∠AMN=∠ACM+∠CAM,证出∠ACM+∠CAM=∠ANG+∠GNC,得出∠ACM+∠CAM=∠BAN+∠NCD,由角平分线得出∠ACM=∠NCD,即可得出结论.
【解析】(1)解:过E作EF∥AB,如图①所示:
则EF∥AB∥CD,
∴∠B=∠BEF,∠D=∠DEF,
∴∠B+∠D=∠BEF+∠DEF,
即∠B+∠D=∠BED;
故答案为:=;
(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;
该逆命题为真命题;理由如下:
过E作EF∥AB,如图①所示:
则∠B=∠BEF,
∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,
∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,
∴∠D=∠DEF,
∴EF∥CD,
∵EF∥AB,
∴AB∥CD;
(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:
则NG∥AB∥CD,
∴∠BAN=∠ANG,∠GNC=∠NCD,
∵∠AMN是△ACM的一个外角,
∴∠AMN=∠ACM+∠CAM,
又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,
∴∠ACM+∠CAM=∠ANG+∠GNC,
∴∠ACM+∠CAM=∠BAN+∠NCD,
∵CN平分∠ACD,
∴∠ACM=∠NCD,
∴∠CAM=∠BAN.
24.
【分析】(1)过E作EF∥AB,则∠B=∠BEF,证出∠D=∠DEF,得出EF∥CD,即可得出结论;
(2)过点N作NG∥AB,交BM于点G,则NG∥AB∥CD,由平行线的性质得出∠ABN=∠BNG,∠GNC=∠NCD,由三角形的外角性质得出∠BMN=∠BCM+∠CBM,证出∠BCM+∠CBM=∠BNG+∠GNC,得出∠BCM+∠CBM=∠ABN+∠NCD,由角平分线得出∠BCM=∠NCD,即可得出结论;
(3)如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,
根据平行线的性质和角平分线的定义即可得到结论.
【解析】(1)证明:如图2,过点E,作EF∥AB,
∴∠B=∠BEF,
∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知),
∴∠B+∠C=∠BEF+∠FEC(等量代换),
∴∠C=∠CEF(等式性质),
∴EF∥CD,
∵EF∥AB,
∴AB∥CD(平行于同一条直线的两条直线互相平行);
故答案为:BEF,C,CEF,CD;
(2)证明:过点N作NG∥AB,交BM于点G,如图3所示:
则NG∥AB∥CD,
∴∠ABN=∠BNG,∠GNC=∠NCD,
∵∠BMN是△BCM的一个外角,
∴∠BMN=∠BCM+∠CBM,
又∵∠BMN=∠BNM,∠BNM=∠BNG+∠GNC,
∴∠BCM+∠CBM=∠BNG+∠GNC,
∴∠BCM+∠CBM=∠ABN+∠NCD,
∵CN平分∠BCD,
∴∠BCM=∠NCD,
∴∠CBM=∠ABN;
(3)解:∠BEC=2∠BFC,
理由:如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,
∴∠BEG=∠ABE,∠CEG=∠DCE,
∴∠BEC=∠BEG+∠CEG=∠ABE+∠DCE,
同理可得∠BFC=∠ABF+∠DCF,
∵∠ABE,∠DCE的平分线相交于点F,
∴∠ABE=2∠ABF,∠DCE=2∠DCF,
∴∠BEC=2(∠ABF+∠DCF)=2∠BFC.
相关试卷
这是一份数学苏科版12.1 定义与命题一课一练,共10页。
这是一份数学七年级下册12.2 证明同步训练题,共19页。试卷主要包含了5°C.112等内容,欢迎下载使用。
这是一份初中数学苏科版七年级下册12.2 证明精品复习练习题,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。