北京八中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.已知,,是反比例函数的图象上的三点,且,则、、的大小关系是( )
A.B.C.D.
2.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口25万人,通过社会各界的努力,2019年底贫困人口减少至9万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意可列方程( )
A.25(1﹣2x)=9B.
C.9(1+2x)=25D.
3.如图,网格中的两个三角形是位似图形,它们的位似中心是( )
A.点AB.点BC.点CD.点D
4.一个盒子装有红、黄、白球分别为2、3、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是( )
A.B.C.D.
5.如图所示几何体的左视图正确的是( )
A.B.C.D.
6.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是( )
A.铜陵市明天将有75%的时间降水B.铜陵市明天将有75%的地区降水
C.铜陵市明天降水的可能性比较大D.铜陵市明天肯定下雨
7.下列图形中,可以看作是中心对称图形的是( )
A.B.C.D.
8.已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.15cmB.20cmC.25cmD.30cm
9.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为( )
A.B.C.D.
10.如图,点A,B,C都在⊙O上,∠ABC=70°,则∠AOC的度数是( )
A.35°B.70°C.110°D.140°
二、填空题(每小题3分,共24分)
11.如图,平行四边形ABCD的一边AB在x轴上,长为5,且∠DAB=60°,反比例函数y=和y=分别经过点C,D,则AD=_____.
12.如果,那么锐角_________°.
13.如图,一次函数的图象与反比例函数的图象交于A(2,﹣4),B(m, 2)两点.当x满足条件______________时,一次函数的值大于反比例函数值.
14.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________.
15.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.
16.如图,已知圆锥的底面半径为3,高为4,则该圆锥的侧面积为______.
17.如果,那么=_____.
18.如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为________米.(保留根号)
三、解答题(共66分)
19.(10分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(n,3)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出kx+b﹣>0时x的取值范围.
(3)若M是x轴上一点,且△MOB和△AOB的面积相等,求M点坐标.
20.(6分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系
(1)求关于的函数关系式.
(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)
21.(6分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.
已知:如图1,△ABC.
求作:AB边上的高线.
作法:如图2,
①分别以A,C为圆心,大于长
为半径作弧,两弧分别交于点D,E;
② 作直线DE,交AC于点F;
③ 以点F为圆心,FA长为半径作圆,交AB的延长线于点M;
④ 连接CM.
则CM 为所求AB边上的高线.
根据上述作图过程,回答问题:
(1)用直尺和圆规,补全图2中的图形;
(2)完成下面的证明:
证明:连接DA,DC,EA,EC,
∵由作图可知DA=DC =EA=EC,
∴DE是线段AC的垂直平分线.
∴FA=FC .
∴AC是⊙F的直径.
∴∠AMC=______°(___________________________________)(填依据),
∴CM⊥AB.
即CM就是AB边上的高线.
22.(8分)如图,是的直径,轴,交于点.
(1)若点,求点的坐标;
(2)若为线段的中点,求证:直线是的切线.
23.(8分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?
24.(8分)图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC是可伸缩的,其转动点A距离地面BD的高度AE为3.5m.当AC长度为9m,张角∠CAE为112°时,求云梯消防车最高点C距离地面的高度CF.(结果精确到0.1m,参考数据:sin22°≈0.37,cs22°≈0.93,tan22°≈0.1.)
25.(10分)(1)计算;
(2)解不等式.
26.(10分)四边形ABCD是正方形,对角线AC,BD相交于点O.
(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.
①依题意补全图1;
②判断AP与BN的数量关系及位置关系,写出结论并加以证明;
(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、D
4、D
5、A
6、C
7、B
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、1
12、30
13、x<﹣4或0<x<2
14、
15、
16、
17、
18、
三、解答题(共66分)
19、(1)一次函数的解析式为y=﹣3x+9;(2)1<x<2;(3)点M的坐标为(3,0)或(﹣3,0).
20、(1);(2)当x=10万元时,最大月获利为7万元
21、(1)补图见解析;(2)90,直径所对的圆周角是直角.
22、(1);(2)见解析.
23、销售单价为35元时,才能在半月内获得最大利润.
24、CF≈6.8m.
25、(1)0;(2);
26、(1)①图形见解析②AP=BN,AP⊥BN(2)答案见解析.
北京七中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份北京七中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线,下列说法正确的是等内容,欢迎下载使用。
北京市八十中学2023-2024学年八上数学期末教学质量检测试题含答案: 这是一份北京市八十中学2023-2024学年八上数学期末教学质量检测试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,一次演讲比赛中,小明的成绩如下,下列各式中正确的是等内容,欢迎下载使用。
北京朝阳八十中学2023-2024学年八年级数学第一学期期末教学质量检测试题含答案: 这是一份北京朝阳八十中学2023-2024学年八年级数学第一学期期末教学质量检测试题含答案,共7页。试卷主要包含了当x=时,互为相反数.等内容,欢迎下载使用。