人教版九年级下册29.1 投影优秀课堂检测
展开参考答案与试题解析
选择题(共10小题,满分30分,每小题3分)
1.(3分)(2023秋·山东济宁·九年级统考期末)在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )
A. B.
C. D.
【答案】D
【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.
【详解】解:A.影子的方向不相同,故本选项错误;
B. 影子的方向不相同,故本选项错误;
C.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;
D. 影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;
故选:D.
【点睛】本题考查了平行投影特点,难度不大,注意结合选项判断.
2.(3分)(2023春·湖北鄂州·九年级统考期中)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )
A.5B.6C.7D.8
【答案】B
【分析】根据俯视图可知这个几何体,底面有5个正方体,根据主视图及左视图,可知上面有1个正方体,即可得出答案.
【详解】解:根据俯视图可知这个几何体,底面有5个正方体,根据主视图及左视图,可知上面有1个正方体,
∴搭成这个几何体的小正方体的个数是6,
故选:B.
【点睛】本题考查了三视图还原几何体,考查学生分析解决问题的能力,属于基础题.
3.(3分)(2023秋·山东烟台·九年级统考期末)下列关于投影的说法正确的是( )
A.平行投影中的光线是聚成一点的
B.线段的正投影还是线段
C.圆形物体在阳光下的投影可能是椭圆
D.若两人在路灯下的影子一样长,则两人身高也相同
【答案】C
【分析】根据平行投影和视图的关系进行判断即可.
【详解】解:A、平行投影中的光线是平行的,故此选项不符合题意;
B、线段的正投影可能是线段,有可能是点,故此选项不符合题意;
C、圆形物体在阳光下的投影可能是椭圆,故此选项符合题意;
D、若两人在路灯下的影子一样长,则两人身高不一定相同,故此选项不符合题意,
故选:C.
【点睛】本题考查了投影,解题的关键是掌握平行投影的性质和投影的意义.
4.(3分)(2023·云南楚雄·统考二模)如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径r=2,扇形的圆心角等于90°,则围成的圆锥的母线长R的值为( )
A.2B.4C.8D.10
【答案】C
【分析】利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.
【详解】解:∵圆的半径r=2,
∴圆的周长=4π,
∴这个圆锥侧面展开的扇形的弧长是4π,
∵扇形的圆心角等于90°,
∴4π=90πR180,
∴这个扇形的半径是R=8.
故选:C.
【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
5.(3分)(2023秋·黑龙江大庆·九年级校联考期中)如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )
A.①②③④⑤B.②④①③⑤C.⑤④①③②D.⑤③①④②
【答案】B
【分析】太阳的位置和高度决定了影子的方向和长短.一天中,阳光下物体的影子变化规律是上午影子由长逐渐变短;下午影子由短逐渐变长.方向由西逐渐转向东.
【详解】解:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低→高→低.影子位置的变化规律是:从西到东,影子的长短变化规律是:长→短→长.根据影子变化的特点,按时间顺序给这五张照片排序是②④①③⑤.
故选:B.
【点睛】本题主要考查了平行投影,了解物体在阳光下影子的变化规律是解答此题的关键.
6.(3分)(2023春·山东烟台·九年级统考期中)如图是由四个相同的小正方体组成的立体图形,若再增加一块相同的正方体,使主视图和左视图都不变,第五块正方体摆放的位置有个.( )
A.1B.2C.3D.4
【答案】A
【分析】根据组合体的三视图逐项判断即可解答.
【详解】解:再增加一块相同的正方体,使主视图和左视图都不变,第五块正方体摆放的位置只有在图中的阴影部分.
故选:A.
【点睛】本题主要考查简单组合体的三视图、三视图的定义等知识点,掌握简单组合体的三视图的画法和形状是解决问题的关键.
7.(3分)(2023秋·山东泰安·九年级统考期末)如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为( )
A.3B.4C.5D.6
【答案】D
【分析】利用中心投影,延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,证明△PAB∽△PA′B′,然后利用相似比可求出A'B'的长.
【详解】解:延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,
∵P(2,2),A(0,1),B(3,1).
∴PD=1,PE=2,AB=3,
∵AB//A′B′,
∴△PAB∽△PA′B′,
∴ABA′B′=PDPE,即3A′B′=12,
∴A′B′=6,
故选:D.
【点睛】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.
8.(3分)(2023春·河北承德·九年级校考阶段练习)用一些完全相同的小正方体摆成一个几何体,如图是该几何体的左视图和俯视图,针对该几何体所需小正方体的个数m,三人的说法如下,
甲:若m=6,则该几何体有两种摆法;
乙:若m=7,则该几何体有三种摆法;
丙:若m=8,则该几何体只有一种摆法.下列判断正确的是( )
A.甲对,乙错B.乙和丙都错C.甲错,乙对D.乙对,丙错
【答案】C
【分析】根据甲、乙、丙所说m的值,分别画出相应几何体的三视图,再进行判断即可.
【详解】解:如图,
甲:若m=6,则第一层已经摆放5个,第二层只放1个,由左视图的俯视图可得主视图如图①②③所示三种,故甲错;
乙:若m=7,则第二层可放2个,可得主视图如④⑤⑥所示三种,故乙对;
丙:若m=8,则第一层放5个,第二层放3个小正方体,这样只能摆放在后面三个小正方体上,主视图如图⑦所示,只有一种摆法,故丙对,
故选:C
【点睛】本题主要考查了简单组合体的三视图,熟练掌握三视图的相关知识是解答本题的关键.
9.(3分)(2023秋·山东枣庄·九年级统考期末)用小立方块搭成的几何体,从正面看和从上面看的形状图如下,则组成这样的几何体需要的立方块个数为( )
A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块
C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块
【答案】C
【分析】易得这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.
【详解】由主视图可得:这个几何体共有3层,
由俯视图可知第一层正方体的个数为4,
由主视图可知第二层最少为2块,最多的正方体的个数为3块,
第三层只有一块,
故:最多为3+4+1=8个
最少为2+4+1=7个
故选C
【点睛】本题考查由三视图判断几何体,熟练掌握立体图形的三视图是解题关键.
10.(3分)(2023秋·河北承德·九年级统考期末)在边长为1的正方形铁皮上剪下一个扇形(率径为R)和一个圆形(率径为r),使之恰好围成一个圆锥.嘉嘉说图1剪下的圆和扇形一定不可以围成一个圆锥,淇淇说图中剪下的圆和扇形有可能围成一个圆锥,还需要满足条件R=4r,则( )
A.只有嘉嘉的说法正确B.只有淇淇的说法正确
C.两个人的说法均正确D.两人的说法均不正确
【答案】C
【分析】根据图1可知正方形的边长为R,则可求出正方形的对角线长为2R,即R+2r=2R,当扇形的弧长等于底面圆(小圆)的周长时,剪下的圆和扇形才可以围成一个圆锥,根据扇形的弧长和圆的周长公式可以得到r=14R,代入R+2r=2R中,即可判断嘉嘉的说法是否正确;图11-2中正方形的边长不再是R,所以不再满足R+2r=2R,根据淇淇所说的,当R=4r时,可得扇形的弧长=2πr,即得到扇形的弧长等于小圆的周长,从而可判断淇淇的说法是否正确.
【详解】解:由图1可知正方形的边长为R,
∴正方形的对角线=R2+R2=2R,
∴R+2r=2R,
∵l扇形=90°πR180°=πR2,C小圆=2πr,
要使剪下的圆和扇形才可以围成一个圆锥,则扇形的弧长等于底面圆(小圆)的周长,
∴πR2=2πr,
∴r=14R,
将r=14R代入R+2r,得
R+2×14R=32R≠2R,
∴图1剪下的圆和扇形一定不可以围成一个圆锥,
∴嘉嘉说的对,
∵图2中正方形的边长不再是R,
∴不再满足R+2r=2R,
当R=4r时,l扇形=90°πR180°=πR2=π·4r2=2πr,
∵C小圆=2πr,
∴l扇形= C小圆,
∴淇淇说的对
故选C.
【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图.关键是理解扇形的弧长等于圆锥底面周长.
二.填空题(共6小题,满分18分,每小题3分)
11.(3分)(2023秋·全国·九年级专题练习)如图为一机器零件的三视图,它的俯视图为正三角形,根据图中所标的尺寸,计算这个几何体的表面积是 .(结果保留根号)
【答案】323+96
【分析】根据三视图可得机器零件为正三棱柱,三棱柱的上下底是高为43的等边三角形,三棱柱高为4,求出等边三角形边长,求出表面积即可.
【详解】解: 由三视图得机器零件为正三棱柱,
作CD⊥AB于D,
∵△ABC是正三角形,
在Rt△BCD中,BC=CDsin∠B=8
∴ S表面积=2S底面积+S侧面积=2×12×8×43+3×8×4=323+96 .
故答案为:323+96
【点睛】本题考查了根据三视图还原几何体,并求其表面积.根据三视图得到几何体是正三棱柱,并根据三视图原则“长对正,高平齐,宽相等”确定相关数据时解题关键.
12.(3分)(2023秋·全国·九年级期末)如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为 .
【答案】8m
【分析】根据题意,画出示意图,易得:RtΔEDC∼RtΔCDF,,进而可得EDDC=DCFD;即DC2=ED⋅FD,代入数据可得答案.
【详解】解:如图:过点C作CD⊥EF,
由题意得:△EFC是直角三角形,∠ECF=90°,
∵∠EDC=∠CDF=90∘,
∴∠E+∠ECD=∠ECD+∠DCF=90∘,
∴∠E=∠DCF,
∴RtΔEDC∼RtΔCDF,,
∴EDDC=DCFD;即DC2=ED⋅FD,
由题意得:ED=4,FD=16,
∴DC2=64,
DC=8(负值舍去),
故答案为:8m.
【点睛】本题考查了平行投影,相似三角形应用,通过投影的知识结合三角形的相似,求解高的大小是平行投影性质在实际生活中的应用.
13.(3分)(2023秋·内蒙古包头·九年级包头市第三十五中学校考期中)如图是一个包装盒的三视图,则这个包装盒的体积是 cm3(结果保留)
【答案】2000π.
【分析】由图可知包装盒是圆柱体,直径20cm,高20cm,由此求圆柱体体积即可.
【详解】由图知此包装盒是圆柱体,底面圆的直径是20cm,高是20cm,
∴π×(202)2×20=2000π(cm3),
故填: 2000π.
【点睛】此题考查由三视图得到立体图形,会观察三视图得到立体图形的具体形状是解题的关键.
14.(3分)(2023秋·湖南永州·九年级统考期中)如下图是由一些完全相同的小立方块达成的几何体,从正面、左面、上面看到的形状图,那么搭成这个几何体所用的小立方块个数是 块.
【答案】9
【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
【详解】解:综合主视图,俯视图,左视图,可得:
底层有6个小正方体,第二层有2个小正方体,第三层有1个小正方体,
所以搭成这个几何体所用的小立方块的个数是6+2+1=9,
故答案为:9.
【点睛】本题考查了由三视图判断几何体.
15.(3分)(2023秋·全国·九年级专题练习)如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是 (多填或错填得0分,少填酌情给分).
【答案】①②③
【分析】根据几何体的主视图和左视图用正方体实物搭出图形判断,或者根据主视图和左视图想象出每个位置正方体的个数进行计算.
【详解】综合左视图跟主视图,从正面看,第1行第1列有3个正方体,第1行第2列有1个或第2行第2列有1个或都有1个,第2行第1列有2个正方体,第2行第1列有2个正方体.
故答案为: ①②③.
【点睛】本题考查了学生的空间想象能力和三视图的综合能力,解题关键是熟练掌握三视图,充分发挥空间想象.
16.(3分)(2023春·山东日照·九年级校考期中)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD=13m,垂直于地面的木棒EF与影子FG的比为2∶3,则点O,M之间的距离等于 米.转动时,叶片外端离地面的最大高度等于 米.
【答案】 10 10+13
【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD于点J,过点B作BI⊥OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据EFFG=OMMH=23,求出OM的长度,证明△BIO∽△JIB,得出BI=23IJ,OI=49IJ,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.
【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD于点J,过点B作BI⊥OJ,垂足为I,延长MO,使得OK=OB,
由题意可知,点O是AB的中点,
∵OH∥AC∥BD,
∴点H是CD的中点,
∵CD=13m,
∴CH=HD=12CD=6.5m,
∴MH=MC+CH=8.5+6.5=15m,
又∵由题意可知:EFFG=OMMH=23,
∴OM15=23,解得OM=10m,
∴点O、M之间的距离等于10m,
∵BI⊥OJ,
∴∠BIO=∠BIJ=90°,
∵由题意可知:∠OBJ=∠OBI+∠JBI=90°,
又∵∠BOI+∠OBI=90°,
∴∠BOI=∠JBI,
∴△BIO∽△JIB,
∴BIIJ=OIBI=23,
∴BI=23IJ,OI=49IJ,
∵OJ∥CD,OH∥DJ,
∴四边形OHDJ是平行四边形,
∴OJ=HD=6.5m,
∵OJ=OI+IJ=49IJ+IJ=6.5m,
∴IJ=4.5m,BI=3m,OI=2m,
∵在Rt△OBI中,由勾股定理得:OB2=OI2+BI2,
∴OB=OI2+BI2=22+32=13m,
∴OB=OK=13m,
∴MK=MO+OK=10+13m,
∴叶片外端离地面的最大高度等于10+13m,
故答案为:10,10+13.
【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.
三.解答题(共7小题,满分52分)
17.(6分)(2023秋·福建三明·九年级统考期末)如图是由7个相同的小正方体搭成的几何体,请在网格中画出从左面和上面看到的几何体的形状图.(用实线描黑)
【答案】见解析
【分析】从左面看到的形状是2列,从左往右正方形的个数依次是3,1;从上面看到的形状是3列,从左往右正方形的个数依次是1,2,1;依此作图即可.
【详解】
【点睛】本题考查组合几何体三视图的画法;用到的知识点为:主视图、左视图、俯视图分别是从物体的正面、左面、上面看到的平面图形.
18.(6分)(2023春·九年级单元测试)学校食堂厨房的桌子上整齐地摆放着若干个相同规格的菜碟,每一摞菜碟的高度与菜碟的个数的关系如表1所示.
(1)把x个菜碟放成一摞时,请直接写出这一摞菜碟的高度(用含x的式子表示);
(2)如图所示,是几摞菜碟的三视图,厨师想把它们整齐叠成一摞,求叠成一摞后的高度是多少.
【答案】(1)1.8x+1.2cm
(2)26.4cm
【分析】(1)由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x时,碟子的高度为3+1.8x−1;
(2)根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.
【详解】(1)由表格可知,每增加一个碟子高度增加1.8cm,
∴当桌子上放有x个碟子时,碟子的高度是3+1.8x−1=1.8x+1.2cm;
(2)由三视图知这四摞碟子一共有7+4+3=14个碟子,
由(1)知每个碟子的高度为1.8cm,
∴叠成一摞后碟子的高度为14×1.8+1.2=26.4cm.
【点睛】此题考查了图形的变化类问题及由三视图判断几何体的知识,解题的关键是具有获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.
19.(8分)(2023·浙江台州·统考一模)物体在太阳光照射下,影子的长度与时间变化直接相关.小明在某天的8点至16点之间,测量了一根2.7米长的直杆垂直于地面时的影子长度,发现影子长度y与时间t8≤t≤16之间近似二次函数关系,可满足关系式y=at−122+c.已知该天11点时影子长度为1.31米,12点时影子长度为1.08米.
(1)请确定a,c的值.
(2)如图,太阳光线和与地面之间的夹角为θ,求14点时tanθ的值.
(3)若另有一垂直于地面的旗杆长度为5.4米,请确定该天9点至14点间这根旗杆影子长度m的范围.
【答案】(1)a=0.23c=1.08
(2)tanθ=1.35
(3)2.16≤m≤6.3
【分析】(1)利用待定系数法即可求解;
(2)求得t=14时,y=2,再利用正切函数即可求解;
(3)先求得9≤t≤14时,函数的最大值和最小值,再相似比即可求解.
【详解】(1)解:由题意可知t=11,y=1.31代入函数解析式得1.31=a11−122+c,
把t=12,y=1.08代入函数解析式得1.08=a12−122+c,
即1.31=a+c1.08=c,
解得a=0.23c=1.08.
(2)解:由(1)得函数解析式为y=0.23t−122+1.088≤t≤16,
把t=14代入y=0.23t−122+1.08得y=2,
则tanθ=2.72=1.35.
(3)解:∵y=0.23t−122+1.089≤t≤14,0.23>0
∴当t=12时,y取得最小值,y=0.2312−122+1.08=1.08,
当t=9时,y取得最大值,y=0.239−122+1.08=3.15,
∵旗杆与直杆的长度比为5.4:2.7=2:1,
∴m:y=2:1,
∴m的取值范围为1.08×2≤m≤3.15×2,
即2.16≤m≤6.3.
【点睛】本题考查了二次函数的应用,正切函数的定义,相似比的意义,用待定系数法求得二次函数的解析式是解题的关键.
20.(8分)(2023·山西·九年级校考期中)综合与实践
问题情境:在棱长为1的正方体右侧拼搭若干个棱长小于或等于1的其它正方体,使拼成的立体图形为一个长方体.如图1,是两个棱长为1的正方体搭成的长方体,图2是从上面看这个长方体得到的平面图形,它由两个正方形组成.
操作探究:
(1)如图3是在棱长为1的正方体右侧拼搭了4个棱长小于1的正方体形成的长方体,请画出从上面看这个长方体得到的平面图形;
(2)已知一个长方体是按上述方式拼成的,组成它的正方体不超过10个,且若从上面看这个长方体得到的平面图形由4个正方形组成.
请从A,B两题中任选一题作答,我选择 题.
A.请画出从上面看这个长方体得到的平面图形.(请画出所有可能的图形)
B.请画出从上面看这个长方体得到的平面图形.(请画出所有可能的图形,并在所画图形的下方直接写出拼成该长方体所需的正方体的总个数)
【答案】(1)画图见解析;(2)见解析.
【分析】(1)根据题意画出图形即可;
(2)有四种可能的图形,
第一种:4个棱长为1的正方体排成一行;
第二种:左右各1个棱长为1的正方体,中间4个棱长为12的正方体(2行2列摆放);
第三种:左边1个棱长为1的正方体,右边9个棱长为13的正方体(3行3列摆放);
第四种:左边1个棱长为1的正方体,右边1个棱长为23和10个棱长为13的正方体.
【详解】解:(1)由图3可得,从上面看这个长方体得到的平面图形为:
(2) 若选A题:由题可得,从上面看这个长方体得到的平面图形为:
若选B题:由题可得,从上面看这个长方体得到的平面图形为:
【点睛】本题涉及的知识点:物体的三视图.
21.(8分)(2023秋·山东青岛·九年级校联考期末)小明是魔方爱好者,他擅长玩各种魔方,从二阶魔方到九阶魔方,他都能成功复原.有一天,小明突然想到一个问题,在九阶魔方中,到底含有多少个长方体呢?为此,我们先来解决这样一个数学问题:如图,图1是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.这个几何体中一共包含多少个长方体(包括正方体)?(参考公式:1+2+3…+n=nn+12).
问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.
探究一:如图2,该几何体有1个小立方体组成,显然,该几何体共有1个长方体.如图3,该几何体有2个小立方体组成,那么它一共包含1+2=3个长方体.如图4,该几何体有3个小立方体组成,那么它一共包含 个长方体.如图5,该几何体﹣共包含210个长方体,那么该几何体共有 个小立方体组成.
探究二:如图6,该几何体有4个小立方体组成,那么它一共包含(1+2)×(1+2)=9个长方体.如图7,该几何体有6个小立方体组成,那么它一共包含 个长方体.如图8,该几何体共有2m个小立方体组成,那么该几何体一共有 个长方体.
探究三:如图1,该几何体共有个a×b×c小立方体组成,那么该几何体共有 个长方体.
探究四:我们现在可以解决小明开始的问题了.在九阶魔方(即a=b=c=9)中,含有 个长方体.
探究五:聪明的小明在学习了三种视图后,又提出一个新的问题:在图1中,若a=6,b=4,c=5,如果拿走一些小立方体后,剩下几何体的三种枧图与原图1的三种视图完全一样,那么最多可以拿走 个小立方体;此时,剩下的几何体的表面积是 .
【答案】探究一:6,20;探究二:18;探究三:abca+1b+1c+18;探究四:91125;探究五:72,124或142或158或164
【分析】探究一:先输出图4的长方体个数,然后得出规律有n小正方体组成的几何体有nn+12个长方体,由此求解即可;
探究二:由探究一可知图6中长一共有1+2=3条线段,宽有1+2=3条线段,高有1条线段,那么它一共包含(1+2)×(1+2)×1=9个长方体,图7中长一共有1+2+3条线段,宽有1+2=3条线段,高有1条线段,图7中它一共包含(1+2+3)×(1+2)×1=18个长方体,
探究三:该几何体共有个a×b×c小立方体组成,该几何体有长有aa+12条线段,宽有bb+12条线段,宽有cc+12条线段,由此求解即可;
探究四:由探究三可知,在九阶魔方(即a=b=c=9)中,含有9×9×99+19+19+18=91125个长方体;
探究五:拿走前后的三视图需要一样,只需要保留三视图三个面的几何体图形一样即可如图所示求解即可.保留底层24个正方体不变,再将每4个一组共6组正方体的摆放顺序进行变化,分类讨论即可.
【详解】解:探究一:由题意得图4一共有:1+2+3=6个长方体,
∵有1个小正方体组成的几何体有1×22=1个长方体,有2个小正方体组成的几何体有2×32=3个长方体,有3个小正方体组成的几何体有3×42=6个长方体......
∴可以得出规律有n小正方体组成的几何体有nn+12个长方体,
∴nn+12=210,即n2+n−420=0,
解得n=20或n=−21(舍去),
故答案为:6,20;
探究二:图6中长一共有1+2=3条线段,宽有1+2=3条线段,高有1条线段,
∴那么它一共包含(1+2)×(1+2)×1=9个长方体,
图7中长一共有1+2+3条线段,宽有1+2=3条线段,高有1条线段,
∴图7中它一共包含(1+2+3)×(1+2)×1=18个长方体,
故答案为:18;
探究三:∵该几何体共有个a×b×c小立方体组成,
∴该几何体有长有aa+12条线段,宽有bb+12条线段,宽有cc+12条线段,
∴图1中一共包含aa+12·bb+12·cc+12=abca+1b+1c+18个长方体,
故答案为:abca+1b+1c+18;
探究四:由探究三可知,在九阶魔方(即a=b=c=9)中,含有9×9×99+19+19+18=91125个长方体;
探究五:∵拿走前后的三视图需要一样,
∴只需要保留三视图三个面的几何体图形一样即可, 如图小方格内的数字表示此处一共有多少个小正方体,此时一共有48个小正方体,即为所求,
∴一共最多可以拿走6×5×4-48=72个小正方体,
①当剩下正方体按如下俯视图摆放时,
表面积为:6×5×2+(3+5)×2+6×4×2=124
②当正方体如图摆放时,
相对于①,此时面积增加16,表面积为124+16=142
③同理,当正方体如图摆放时,
相对于①,此时面积增加32,表面积为124+32=158
④当正方体如图摆放时,
相对于①,此时面积增加40,表面积为124+40=164
故答案为:124或142或158或164
【点睛】本题主要考查了图形类的规律,几何体的表面积等等,解题的关键在于能够准确读懂题意.
22.(8分)(2023春·江苏苏州·九年级统考期末)通常,路灯、台灯、手电筒……的光可以看成是从一个点发出的,在点光源的照射下,物体所产生的影称为中心投影.
(1)【画图操作】如图①,三根底部在同一直线上的旗杆直立在地面上,第一根、第二根旗杆在同一灯光下的影长如图所示.请在图中画出光源的位置及第三根旗杆在该灯光下的影长(不写画法);
(2)【数学思考】如图②,夜晚,小明从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图像大致为________;
A. B.
C. D.
(3)【解决问题】如图③,河对岸有一灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向前进到达点F处测得自己的影长FG=4m.已知小明的身高为1.6m,求灯杆AB的高度.
【答案】(1)见解析
(2)D
(3)6.4m
【分析】[画图操作]根据中心投影,直接画图即可;
[数学思考]等高的物体垂直地面时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;
[解决问题]根据相似三角形的性质即可解答.
【详解】(1)解:[画图操作]光源的位置及第三根旗杆在该灯光下的影长如图①所示;
(2)[数学思考]如图②所示,等高的物体垂直地面时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的影长从A到B的变化是先越来越短再越来越长;
故答案为:D;
(3)[解决问题]∵CD∥EF∥AB,
∴△CDF∽△ABF,△ABG∽△EFG,
∴ CDAB=DFBF,EFAB=GFBG,
又∵CD=EF,
∴ DFBF=GFBG,
∵DF=3m,FG=4m,BF=BD+DF=(BD+3)(m),BG=BD+DF+FG=(BD+7)(m),
∴ 3BD+3=4BD+7,
∴BD=9m,BF=9+3=12m,
∴ 1.6AB=312,
解得:AB=6.4m;
∴灯杆AB的高度为6.4m.
【点睛】本题考查了中心投影,相似三角形的性质的应用等,把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.
23.(8分)(2023秋·山西运城·九年级统考期中)(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体的形状图.
(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示.请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数.其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数.
【答案】(1)见解析;(2)见解析
【分析】(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形画出图形即可;
(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可.
【详解】解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图
从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,
如图所示:
(2)从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,
从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,
左列前行可以是1个正方体或两个正方体,,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2.
根据题意,填图如下:
【点睛】本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键.菜碟的个数
菜碟的高度(单位:cm)
1
3
2
3+1.8
3
3+3.6
4
3+5.4
…
…
人教版九年级下册29.2 三视图精品课后复习题: 这是一份人教版九年级下册29.2 三视图精品课后复习题,文件包含专题292三视图举一反三人教版原卷版docx、专题292三视图举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
人教版九年级下册29.1 投影精品测试题: 这是一份人教版九年级下册29.1 投影精品测试题,文件包含专题291投影举一反三人教版原卷版docx、专题291投影举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
人教版九年级下册28.1 锐角三角函数精品随堂练习题: 这是一份人教版九年级下册28.1 锐角三角函数精品随堂练习题,文件包含专题286锐角三角函数章末九大题型总结拔尖篇人教版原卷版docx、专题286锐角三角函数章末九大题型总结拔尖篇人教版解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。