初中北师大版第六章 反比例函数3 反比例函数的应用优秀一课一练
展开一、选择题
1.一个直角三角形的两直角边长分别为x,y,其面积为2,则y与x之间的关系用图象表示大致为( )
A. B. C. D.
2.近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数解析式为( )
A.y=eq \f(400,x) B.y=eq \f(1,4x) C.y=eq \f(100,x) D.y=eq \f(1,400x)
3.在体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )
4.如果平行四边形的面积为8cm2,那么它的底边长ycm与高xcm之间的函数关系用图象表示大致是( )
5.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(单位:天),平均每天工作的时间为t(单位:小时),那么能正确表示d与t之间的函数关系的图象是( )
6.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图象大致是( )
A. B. C. D.
7.某学校到县城的路程为5 km,一同学骑车从学校到县城的平均速度v(km/h)与所用时间t(h)之间的函数解析式是( )
A.v=5t B.v=t+5 C.v=eq \f(5,t) D.v=eq \f(t,5)
8.某学校要种植一块面积为100 m2的长方形草坪,要求相邻两边长均不小于5 m,则草坪的一边长y(单位:m)随与其相邻的一边长x(单位:m)的变化而变化的图象可能是( )
9.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )
A.该村人均耕地面积随总人口的增多而增多
B.该村人均耕地面积y与总人口x成正比例
C.若该村人均耕地面积为2公顷,则总人口有100人
D.当该村总人口为50人时,人均耕地面积为1公顷
10.反比例函数y1=eq \f(k,x)(0<k<3,x>0)与y2=eq \f(3,x)(x>0)的图象如图所示,反比例函数y1的图象上有一点A,其横坐标为a,过点A作x轴的平行线交反比例函数y2的图象于点B,连接AO、BO.若△ABO的面积为S,则S关于a的大致函数图象是( )
二、填空题
11.如图所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为______________.
12.一菱形的面积为12 cm2,它的两条对角线长分别为a cm,b cm,则a与b之间的函数关系式为a=________;这个函数的图象位于第________象限.
13.一辆汽车行驶在一段全程为100千米的高速公路上,那么这辆汽车行完全程所需的时间y(小时)与它的速度x(千米/小时)之间的关系式为y=________.
14.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm2)的反比例函数,假设其图像如图所示,则y与x的函数关系式为_______.
15.如图,先在杠杆支点左方5 cm处挂上两个50 g的砝码,离支点右方10 cm处挂上一个50 g的砝码,杠杆恰好平衡.若在支点右方再挂三个砝码,则支点右方四个砝码离支点__________cm时,杠杆仍保持平衡.
16.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在 分钟内,师生不能呆在教室.
三、解答题
17.某粮食公司需要把2400吨大米调往灾区救灾.
(1)调动所需时间t(单位:天)与调动速度v(单位:吨/天)有怎样的函数关系?
(2)公司有20辆汽车,每辆汽车每天可运输6吨,预计这批大米最快在几天内全部运到灾区?
18.由物理学知识知道,在力F(单位:N)的作用下,物体会在力F的方向上发生位移s(单位:m),力F所做的功W(单位:J)满足:W=Fs,当W为定值时,F与s之间的函数图象如图,点P(2,7.5)为图象上一点.
(1)试确定F与s之间的函数关系式;
(2)当F=5时,s是多少?
19.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=eq \f(k,v),其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).
(1)求k和m的值;
(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
20.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(单位:元)与日销售量y(单位:个)之间有如下关系:
(1)根据表中数据试确定y与x之间的函数关系式,并画出图象;
(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?
21.如图,是由四条曲线围成的广告标志,建立平面直角坐标系,双曲线对应的函数解析式分别为y=-eq \f(6,x),y=eq \f(6,x).现用四根钢条固定这四条曲线,这种钢条加工成矩形产品按面积计算,每单位面积25元,请你帮助工人师傅计算一下,所需钢条一共花多少钱?
22.甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元.乙商场按顾客购买商品的总金额打6折促销.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p,写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.
答案
1.C.
2.C
3.C
4.C
5.C
6.C.
7.C
8.C.
9.D
10.B
11.答案为:y=eq \f(3,x)
12.答案为:eq \f(24,b)(b>0);一.
13.答案为:.
14.答案为:y=.
15.答案为:2.5.
16.答案为:75.
17.解:(1)根据题意,得vt=2400,t=eq \f(2400,v).
(2)因为v=20×6=120,
把v=120代入t=eq \f(2400,v),得t=eq \f(2400,120)=20.
即预计这批大米最快在20天内全部运到灾区.
18.解:(1)把s=2,F=7.5代入W=Fs,
可得W=7.5×2=15,
∴F与s之间的函数关系式为F=eq \f(15,s).
(2)把F=5代入F=eq \f(15,s),可得s=3.
19.解:(1)将(40,1)代入t=eq \f(k,v),得1=eq \f(k,40),解得k=40.
函数关系式为:t=eq \f(40,v).
当t=0.5时,0.5=eq \f(40,m),解得m=80.
所以,k=40,m=80.
(2)令v=60,得t=eq \f(40,60)=eq \f(2,3).
结合函数图象可知,汽车通过该路段最少需要eq \f(2,3)小时.
20.解:(1)y与x之间的函数关系式为y=eq \f(60,x),图略.
(2)W=(x-2)·y=(x-2)·eq \f(60,x)=60-eq \f(120,x),
当x=10时,W有最大值.
21.解:由反比例函数图象的对称性可知,两条坐标轴将矩形ABCD分成四个全等的小矩形.因为点A为y=eq \f(6,x)的图象上的一点,
所以S矩形AEOH=6.
所以S矩形ABCD=4×6=24.
所以总费用为25×24=600(元).
答:所需钢条一共花600元.
22.解:(1)400≤x<600,少付200元,
∴应付510-200=310(元).
(2)由(1)可知少付200元,
∴函数关系式为:p=eq \f(200,x).
∵k=200,由反比例函数图象的性质可知p随x的增大而减小.
(3)购x元(200≤x<400)在甲商场的优惠金额是100元,乙商场的优惠金额是x-0.6x=0.4x.
当0.4x<100,即200≤x<250时,选甲商场优惠;
当0.4x=100,即x=250时,选甲乙商场一样优惠;
当0.4x>100,即250<x<400时,选乙商场优惠.
日销售单价x/元
3
4
5
6
日销售量y/个
20
15
12
10
初中数学北师大版九年级上册3 反比例函数的应用课时练习: 这是一份初中数学北师大版九年级上册3 反比例函数的应用课时练习,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北师大版九年级上册3 反比例函数的应用复习练习题: 这是一份北师大版九年级上册3 反比例函数的应用复习练习题,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
【课时训练】北师大版数学九年级上册--6.3 反比例函数的应用(pdf版,含答案): 这是一份【课时训练】北师大版数学九年级上册--6.3 反比例函数的应用(pdf版,含答案),文件包含课时训练参考答案全册pdf、63反比例函数的应用pdf等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。