辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
展开辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.分式的化简求值(共3小题)
1.(2023•辽宁)先化简,再求值:÷﹣,其中m=2.
2.(2022•辽宁)先化简,再求值:(+)÷,其中a=4.
3.(2021•辽宁)先化简,再求值:,其中m=.
二.分式方程的应用(共1小题)
4.(2022•辽宁)麦收时节,为确保小麦颗粒归仓,某农场安排A,B两种型号的收割机进行小麦收割作业.已知一台A型收割机比一台B型收割机平均每天多收割2公顷小麦,一台A型收割机收割15公顷小麦所用时间与一台B型收割机收割9公顷小麦所用时间相同.
(1)一台A型收割机和一台B型收割机平均每天各收割小麦多少公顷?
(2)该农场安排两种型号的收割机共12台同时进行小麦收割作业,为确保每天完成不少于50公顷的小麦收割任务,至少要安排多少台A型收割机?
三.一元一次不等式的应用(共1小题)
5.(2023•辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.
(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?
(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2500元,那么最多可购买甲种驱蚊手环多少个?
四.二次函数的应用(共3小题)
6.(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.
(1)求y与x之间的函数关系式;
(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?
7.(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
8.(2021•辽宁)某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.
(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;
(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?
五.相似三角形的判定与性质(共1小题)
9.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D和点E.
(1)求证:BC与⊙O相切;
(2)若sin∠BAC=,CE=6,求OF的长.
六.列表法与树状图法(共3小题)
10.(2023•辽宁)为了推进“优秀传统文化进校园”活动.学校准备在七年级成立四个课外活动小组,分别是:A.民族舞蹈组;B.经典诵读组;C.民族乐器组;D.地方戏曲组,为了了解学生最喜欢哪一个活动小组,学校从七年级全体学生中随机抽取部分学生进行问卷调查,每人必须选择且只能选择一项.并将调查结果绘制成如所示两幅统计图.
请根据图中提供的信息解答下列问题:
(1)本次调查的学生共有 人;
(2)在扇形统计图中,求D组所对应的扇形圆心角的度数,并补全条形统计图;
(3)在重阳节来临之际,学校计划组织学生到敬老院为老人表演节目,准备从这4个小组中随机抽取2个小组汇报演出,请你用列表法或画树状图法,求选中的2个小组恰好是C和D小组的概率.
11.(2022•辽宁)根据防疫需求,某市向全体市民发出“防疫有我”的志愿者招募令,并设置了5个岗位:A.防疫宣传;B.协助核酸采样;C.物资配送;D.环境消杀;E.心理服务,众多热心人士积极报名,但每个报名者只能从中选择一个岗位.光明社区统计了本社区志愿者的报名情况,并将统计结果绘制成如下统计图表.
光明社区志愿者报名情况统计表
岗位 | 频数(人) | 频率 |
A | 60 | 0.15 |
B | a | 0.25 |
C | 160 | 0.40 |
D | 60 | 0.15 |
E | 20 | c |
合计 | b | 1.00 |
根据统计图表提供的信息,解答下列问题:
(1)b= ,c= ;
(2)补全条形统计图;
(3)光明社区约有4000人,请你估计该市市区60万人口中有多少人报名当志愿者?
(4)光明社区从报名“心理服务”岗位的20人中筛选出4名志愿者,这4人中有2人是一级心理咨询师,2人是二级心理咨询师,现从4人中随机选取2人负责心理服务热线,请用列表或画树状图的方法求所选2人恰好都是一级心理咨询师的概率.
12.(2021•辽宁)某校以“我最喜爱的书籍”为主题,对全校学生进行随机抽样调查,每个被调查的学生必须从“科普”、“绘画”、“诗歌”、“散文”四类书籍中选择最喜欢的一类,学校的调查结果如图:
图中信息解答下列问题
(1)本次被调查的学生有 人;
(2)根据统计图中“散文”类所对应的圆心角的度数为 ,请补充条形统计图.
(3)最喜爱“科普”类的4名学生中有1名女生,3名男生,现从4名学生中随机抽取两人参加学校举办的科普知识宣传活动,请用列表或画树状图的方法求出所选的两人恰好都是男生的概率.
辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.分式的化简求值(共3小题)
1.(2023•辽宁)先化简,再求值:÷﹣,其中m=2.
【答案】
【解答】解:原式=
=
=,
∴当m=2时,原式=.
2.(2022•辽宁)先化简,再求值:(+)÷,其中a=4.
【答案】,2.
【解答】解:原式=[+]•
=•
=,
当a=4时,原式==2.
3.(2021•辽宁)先化简,再求值:,其中m=.
【答案】,.
【解答】解:
=•
=
=
=,
当m==4时,原式==.
二.分式方程的应用(共1小题)
4.(2022•辽宁)麦收时节,为确保小麦颗粒归仓,某农场安排A,B两种型号的收割机进行小麦收割作业.已知一台A型收割机比一台B型收割机平均每天多收割2公顷小麦,一台A型收割机收割15公顷小麦所用时间与一台B型收割机收割9公顷小麦所用时间相同.
(1)一台A型收割机和一台B型收割机平均每天各收割小麦多少公顷?
(2)该农场安排两种型号的收割机共12台同时进行小麦收割作业,为确保每天完成不少于50公顷的小麦收割任务,至少要安排多少台A型收割机?
【答案】(1)一台A型收割机平均每天收割小麦5公顷,一台B型收割机平均每天收割小麦3公顷;
(2)至少要安排7台A型收割机.
【解答】解:(1)设一台B型收割机平均每天收割小麦x公顷,则一台A型收割机平均每天收割小麦(x+2)公顷,
依题意得:=,
解得:x=3,
经检验,x=3是原方程的解,且符合题意,
∴x+2=3+2=5.
答:一台A型收割机平均每天收割小麦5公顷,一台B型收割机平均每天收割小麦3公顷.
(2)设安排m台A型收割机,则安排(12﹣m)台B型收割机,
依题意得:5m+3(12﹣m)≥50,
解得:m≥7.
答:至少要安排7台A型收割机.
三.一元一次不等式的应用(共1小题)
5.(2023•辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.
(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?
(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2500元,那么最多可购买甲种驱蚊手环多少个?
【答案】(1)每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;
(2)最多可购买甲种驱蚊手环31个.
【解答】解:(1)设每个甲种驱蚊手环的售价是x元,每个乙种驱蚊手环的售价是y元,
根据题意得:,
解得:.
答:每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;
(2)设购买甲种驱蚊手环m个,则购买乙种驱蚊手环(100﹣m)个,
根据题意得:36m+20(100﹣m)≤2500,
解得:m≤,
又∵m为正整数,
∴m的最大值为31.
答:最多可购买甲种驱蚊手环31个.
四.二次函数的应用(共3小题)
6.(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.
(1)求y与x之间的函数关系式;
(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?
【答案】见试题解答内容
【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,
∴,
解得,
即y与x之间的函数关系式为y=﹣2x+320;
(2)设利润为w元,
由题意可得:w=(x﹣100)(﹣2x+320)=﹣2(x﹣130)2+1800,
∴当x=130时,w取得最大值,此时w=1800,
答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.
7.(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?
【答案】(1)y=﹣20x+500;
(2)售价定为18元/件时,每天最大利润为700元.
【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由所给函数图象可知:,
解得:,
故y与x的函数关系式为y=﹣20x+500;
(2)设每天销售这种商品所获的利润为w,
∵y=﹣20x+500,
∴w=(x﹣13)y=(x﹣13)(﹣20x+500)
=﹣20x2+760x﹣6500
=﹣20(x﹣19)2+720,
∵﹣20<0,
∴当x<19时,w随x的增大而增大,
∵13≤x≤18,
∴当x=18时,w有最大值,最大值为700,
∴售价定为18元/件时,每天最大利润为700元.
8.(2021•辽宁)某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.
(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;
(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?
【答案】(1)y=﹣10x+540;
(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.
【解答】解:(1)设函数关系式为y=kx+b,
由题意可得:,
解得:,
∴函数关系式为y=﹣10x+540;
(2)由题意可得:w=(x﹣20)y=(x﹣20)(﹣10x+540)=﹣10(x﹣37)2+2890,
∵﹣10<0,
∴当x=37时,w有最大值为2890,
答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.
五.相似三角形的判定与性质(共1小题)
9.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D和点E.
(1)求证:BC与⊙O相切;
(2)若sin∠BAC=,CE=6,求OF的长.
【答案】(1)见解析;
(2)2.
【解答】(1)证明:连接OE,
∵四边形ODEF是平行四边形,
∴EF∥OD,EF=OD,
∵OA=OD,
∴EF∥OA,EF=OA,
∴四边形AOEF是平行四边形,
∴OE∥AC,
∴∠OEB=∠ACB,
∵∠ACB=90°,
∴∠OEB=90°,
∴OE⊥BC,
∵OE是⊙O的半径,
∴BC与⊙O相切;
(2)解:过点F作FH⊥OA于点H,
∵四边形AOEF是平行四边形,
∴EF∥OA,
∴∠CFE=∠CAB,
∴sin∠CFE=sin∠CAB=,
在Rt△CEF中,∠ACB=90°,
∵CE=6,sin∠CFE=,
∴EF=,
∵四边形AOEF是平行四边形,且OA=OE,
∴▱AOEF是菱形,
∴AF=AO=EF=10,
在Rt△AFH中,∠AHF=90°,
∵AF=10,sin∠CAB=,
∴FH=AF,
∵AH2=AF2﹣FH2,
∴AH=,
∴OH=AO﹣AH=10﹣8=2,
在Rt△OFH中,∠FHO=90°,
∵OF2=OH2+FH2,
∴OF=,
∴OF=2.
六.列表法与树状图法(共3小题)
10.(2023•辽宁)为了推进“优秀传统文化进校园”活动.学校准备在七年级成立四个课外活动小组,分别是:A.民族舞蹈组;B.经典诵读组;C.民族乐器组;D.地方戏曲组,为了了解学生最喜欢哪一个活动小组,学校从七年级全体学生中随机抽取部分学生进行问卷调查,每人必须选择且只能选择一项.并将调查结果绘制成如所示两幅统计图.
请根据图中提供的信息解答下列问题:
(1)本次调查的学生共有 100 人;
(2)在扇形统计图中,求D组所对应的扇形圆心角的度数,并补全条形统计图;
(3)在重阳节来临之际,学校计划组织学生到敬老院为老人表演节目,准备从这4个小组中随机抽取2个小组汇报演出,请你用列表法或画树状图法,求选中的2个小组恰好是C和D小组的概率.
【答案】(1)100;
(2)36°;
(3).
【解答】解:(1)35÷35%=100(人),
故答案为:100;
(2)D组所对应的扇形圆心角的度数为:360=36°,
选择B组的人数为:100﹣15﹣35﹣10=40(人),补全条形统计图如下:
(3)用树状图表示所有等可能出现的结果如下:
共有12种等可能出现的结果,其中2个小组恰好是C和D小组的有2种,
所以选中的2个小组恰好是C和D小组的概率为=.
11.(2022•辽宁)根据防疫需求,某市向全体市民发出“防疫有我”的志愿者招募令,并设置了5个岗位:A.防疫宣传;B.协助核酸采样;C.物资配送;D.环境消杀;E.心理服务,众多热心人士积极报名,但每个报名者只能从中选择一个岗位.光明社区统计了本社区志愿者的报名情况,并将统计结果绘制成如下统计图表.
光明社区志愿者报名情况统计表
岗位 | 频数(人) | 频率 |
A | 60 | 0.15 |
B | a | 0.25 |
C | 160 | 0.40 |
D | 60 | 0.15 |
E | 20 | c |
合计 | b | 1.00 |
根据统计图表提供的信息,解答下列问题:
(1)b= 400 ,c= 0.05 ;
(2)补全条形统计图;
(3)光明社区约有4000人,请你估计该市市区60万人口中有多少人报名当志愿者?
(4)光明社区从报名“心理服务”岗位的20人中筛选出4名志愿者,这4人中有2人是一级心理咨询师,2人是二级心理咨询师,现从4人中随机选取2人负责心理服务热线,请用列表或画树状图的方法求所选2人恰好都是一级心理咨询师的概率.
【答案】见试题解答内容
【解答】解:(1)统计的志愿者总人数为:60÷0.15=400,
∴b=400,
c=20÷400=0.05,
故答案为:400,0.05;
(2)a=400×0.25=100,
补全的条形统计图如图所示;
(3)60×=6(万人),
答:估计该市市区60万人口中有6万人报名当志愿者;
(4)设一级心理咨询师用A表示,二级心理咨询师用B表示,
树状图如下所示:
由上可得,一共有12种可能性,其中所选2人恰好都是一级心理咨询师有2种可能性,
∴所选2人恰好都是一级心理咨询师的概率为=.
12.(2021•辽宁)某校以“我最喜爱的书籍”为主题,对全校学生进行随机抽样调查,每个被调查的学生必须从“科普”、“绘画”、“诗歌”、“散文”四类书籍中选择最喜欢的一类,学校的调查结果如图:
图中信息解答下列问题
(1)本次被调查的学生有 50 人;
(2)根据统计图中“散文”类所对应的圆心角的度数为 72° ,请补充条形统计图.
(3)最喜爱“科普”类的4名学生中有1名女生,3名男生,现从4名学生中随机抽取两人参加学校举办的科普知识宣传活动,请用列表或画树状图的方法求出所选的两人恰好都是男生的概率.
【答案】见试题解答内容
【解答】解:(1)20÷40%=50(人),
所以本次被调查的学生有50人;
故答案为:50;
(2)“散文”类所对应的圆心角的度数为360°×=72°;
最喜欢“绘画”类的人数为50﹣4﹣20﹣10=16(人),
条形统计图补充为:
故答案为:72°;
(3)画树状图为:
共有12种等可能的结果,其中所选的两人恰好都是男生的结果数为6,
所以所选的两人恰好都是男生的概率==.
辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份辽宁省盘锦市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共20页。试卷主要包含了﹣1,先化简,再求值,,反比例函数的图象经过点C,之间满足如图所示的一次函数关系等内容,欢迎下载使用。
辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份辽宁省阜新市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共13页。试卷主要包含了÷,其中a=,,其中a=4,÷,其中x=+1等内容,欢迎下载使用。
辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份辽宁省抚顺市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共33页。