江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类
展开江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类
一.一次函数的应用(共1小题)
1.(2002•南通)某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.
(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;
(2)当新家电的总产量为900台时,该公司的盈亏情况如何?
(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.
(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)
二.二次函数综合题(共4小题)
2.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.
(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;
(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
3.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.
(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;
(2)点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;
(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.
4.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.
(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有 (填序号);
(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;
(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.
5.(2002•南通)设抛物线y=ax2+bx+c经过A(﹣1,2),B(2,﹣1)两点,且与y轴相交于点M.
(1)求b和c(用含a的代数式表示);
(2)在抛物线y=ax2﹣bx+c﹣1上横坐标与纵坐标相等的点的坐标;
(3)在第(2)小题所求出的点中,有一个点也在抛物线y=ax2+bx+c上,试判断直线AM和x轴的位置关系,并说明理由.
三.平行四边形的性质(共1小题)
6.(2002•南通)已知:如图,四边形ABCD是平行四边形,且∠EAD=∠BAF.
(1)求证:△CEF是等腰三角形;
(2)△CEF的哪两边之和恰好等于▱ABCD的周长?证明你的结论.
四.四边形综合题(共2小题)
7.(2021•南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.
(1)求∠BCF的大小(用含α的式子表示);
(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;
(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.
8.(2022•南通)如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.
(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;
(2)当AE=3时,求CF的长;
(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.
五.切线的性质(共1小题)
9.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.
(1)求证:四边形ODCE是菱形;
(2)若⊙O的半径为2,求图中阴影部分的面积.
六.相似形综合题(共1小题)
10.(2023•南通)正方形ABCD中,点E在边BC,CD上运动(不与正方形顶点重合).作射线AE,将射线AE绕点A逆时针旋转45°,交射线CD于点F.
(1)如图,点E在边BC上,BE=DF,则图中与线段AE相等的线段是 ;
(2)过点E作EG⊥AF,垂足为G,连接DG,求∠GDC的度数;
(3)在(2)的条件下,当点F在边CD延长线上且DF=DG时,求的值.
江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类
参考答案与试题解析
一.一次函数的应用(共1小题)
1.(2002•南通)某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.
(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;
(2)当新家电的总产量为900台时,该公司的盈亏情况如何?
(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.
(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)
【答案】见试题解答内容
【解答】解:(1)根据题意,
y1=0.3x+200,
y2=0.5x﹣(0.3x+200)=0.2x﹣200;
(2)把x=900代入y2中,
可得y2=0.2×900﹣200=﹣20<0,
∴当总产量为900台时,公司会亏损,亏损额为20万元;
(3)根据题意,
当0.2x﹣200<0时,解得x<1000,说明总产量小于1000台时,公司会亏损;
当0.2x﹣200>0时,解得x>1000,说明总产量大于1000台时,公司会盈利;
当0.2x﹣200=0时,解得x=1000,说明总产量等于1000台时,公司不会亏损也不会盈利.
二.二次函数综合题(共4小题)
2.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.
(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;
(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
【答案】(1)函数y=x+2的图象上不存在“等值点”,函数y=x2﹣x的图象上有两个“等值点”(0,0)或(2,2);
(2)b的值为﹣2或4;
(3)m<﹣或﹣1<m<2.
【解答】解:(1)在y=x+2中,令x=x+2,得0=2不成立,
∴函数y=x+2的图象上不存在“等值点”;
在y=x2﹣x中,令x2﹣x=x,
解得:x1=0,x2=2,
∴函数y=x2﹣x的图象上有两个“等值点”(0,0)或(2,2);
(2)在函数y=(x>0)中,令x=,
解得:x=,
∴A(,),
在函数y=﹣x+b中,令x=﹣x+b,
解得:x=b,
∴B(b,b),
∵BC⊥x轴,
∴C(b,0),
∴BC=|b|,
∵△ABC的面积为3,
∴×|b|×|﹣b|=3,
当b<0时,b2﹣2﹣24=0,
解得b=﹣2,
当0≤b<2时,b2﹣2+24=0,
∵Δ=(﹣2)2﹣4×1×24=﹣84<0,
∴方程b2﹣2+24=0没有实数根,
当b≥2时,b2﹣2﹣24=0,
解得:b=4,
综上所述,b的值为﹣2或4;
(3)令x=x2﹣2,
解得:x1=﹣1,x2=2,
∴函数y=x2﹣2的图象上有两个“等值点”(﹣1,﹣1)或(2,2),
①当m<﹣1时,W1,W2两部分组成的图象上必有2个“等值点”(﹣1,﹣1)或(2,2),
W1:y=x2﹣2(x≥m),
W2:y=(x﹣2m)2﹣2(x<m),
令x=(x﹣2m)2﹣2,
整理得:x2﹣(4m+1)x+4m2﹣2=0,
∵W2的图象上不存在“等值点”,
∴Δ<0,
∴(4m+1)2﹣4(4m2﹣2)<0,
∴m<﹣,
②当m=﹣1时,有3个“等值点”(﹣2,﹣2)、(﹣1,﹣1)、(2,2),
③当﹣1<m<2时,W1,W2两部分组成的图象上恰有2个“等值点”,
④当m=2时,W1,W2两部分组成的图象上恰有1个“等值点”(2,2),
⑤当m>2时,W1,W2两部分组成的图象上没有“等值点”,
综上所述,当W1,W2两部分组成的图象上恰有2个“等值点”时,m<﹣或﹣1<m<2.
3.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.
(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;
(2)点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;
(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.
【答案】(1)存在,k=±;
(2)证明见解答;
(3)0<n≤1且n≠1/6.
【解答】(1)解:存在,理由:
由题意得,(1,2)的“k级变换点”为:(k,﹣2k),
将(k,﹣2k)代入反比例函数表达式得:﹣4=k(﹣2k),
解得:k=±;
(2)证明:由题意得,点B的坐标为:(kt,﹣kt+2k),
由点A的坐标知,点A在直线y=x﹣2上,同理可得,点B在直线y=﹣x+2k,
则y1=m2﹣2,y2=﹣m2+2k,
则y1﹣y2=m2﹣2+﹣m2﹣2k=m2﹣2k﹣2,
∵k≤﹣2,则﹣2k﹣2+m2≥2,
即y1﹣y2≥2;
(3)解:设在二次函数上的点为点A、B,
设点A(s,t),则其“1级变换点”坐标为:(s,﹣t),
将(s,﹣t)代入y=﹣x+5得:﹣t=﹣s+5,
则t=s﹣5,
即点A在直线y=x﹣5上,
同理可得,点B在直线y=x﹣5上,
即点A、B所在的直线为y=x﹣5;
由抛物线的表达式知,其和x轴的交点为:(﹣1,0)、(5,0),其对称轴为x=2,
当n>0时,
抛物线和直线AB的大致图象如下:
直线和抛物线均过点(5,0),则点A、B必然有一个点为(5,0),设该点为点B,另外一个点为点A,如上图,
联立直线AB和抛物线的表达式得:y=nx2﹣4nx﹣5n=x﹣5,
设点A的横坐标为x,则x+5=,
∵x≥0,
则﹣5≥0,
解得:n≤1,
此外,直线AB和抛物线在x≥0时有两个交点,故Δ=(﹣4n﹣1)2﹣4n(5﹣5n)=(6n﹣1)2>0,
故n≠,
即0<n≤1且n≠;
当n<0时,
当x≥0时,直线AB不可能和抛物线在x≥0时有两个交点,
故该情况不存在,
综上,0<n≤1且n≠1/6.
4.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.
(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有 ②③ (填序号);
(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;
(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.
【答案】(1)②③;
(2)3或﹣1;
(3)≤n≤1.
【解答】解:(1)①(﹣2,﹣)到两坐标轴的距离分别是2,,
∵2>1,<1,
∴(﹣2,﹣)不是反比例函数y=图象的“1阶方点”;
②(﹣1,﹣1)到两坐标轴的距离分别是1,1,
∵≤1,1≤1,
∴(﹣1,﹣1)是反比例函数y=图象的“1阶方点”;
③(1,1)到两坐标轴的距离分别是1,1
∵1≤1,1≤1,
∴(1,1)是反比例函数y=图象的“1阶方点”;
故答案为:②③;
(2)∵当x=3时,y=ax﹣3a+1=a(x﹣3)+1=1,
∴函数经过点(3,1),
如图1,在以O为中心,边长为4的正方形ABCD中,当直线与正方形区域只有唯一交点时,图象的“2阶方点”有且只有一个,
由图可知,C(2,﹣2),D(2,2),
∵一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,
当直线经过点D时,a=﹣1,此时图象的“2阶方点”有且只有一个,
当直线经过点C时,a=3,此时图象的“2阶方点”有且只有一个,
综上所述:a的值为3或﹣1;
(3)在以O为中心,边长为2n的正方形ABCD中,当抛物线与正方形区域有公共部分时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,
如图2,设A(n,n),C(﹣n,﹣n),B(n,﹣n),D(﹣n,n),
当抛物线经过点B时,n=1;
当抛物线经过点D时,n=﹣1或n=;
∴当≤n≤1时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在.
5.(2002•南通)设抛物线y=ax2+bx+c经过A(﹣1,2),B(2,﹣1)两点,且与y轴相交于点M.
(1)求b和c(用含a的代数式表示);
(2)在抛物线y=ax2﹣bx+c﹣1上横坐标与纵坐标相等的点的坐标;
(3)在第(2)小题所求出的点中,有一个点也在抛物线y=ax2+bx+c上,试判断直线AM和x轴的位置关系,并说明理由.
【答案】见试题解答内容
【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,2),B(2,﹣1)两点,
∴,
解得.
(2)由(1)得,抛物线y=ax2﹣bx+c﹣1的解析式是y=ax2+(a+1)x﹣2a,
即ax2+ax﹣2a=0,
∵a是抛物线解析式的二次项系数,
∴a≠0,
可得,x2+x﹣2=0,
∴方程的解是x1=1,x2=﹣2,
∴抛物线y=ax2﹣bx+c﹣1满足条件的点的坐标是P1(1,1),P2(﹣2,﹣2).
(3)由(1)得抛物线y=ax2+bx+c的解析式是y=ax2﹣(a+1)x+1﹣2a,
①当P1(1,1)在抛物线上时,有a﹣(a+1)+1﹣2a=1,
解得a=﹣,这时抛物线y=ax2+bx+c的解析式是y=﹣x2﹣x+2,它与y轴的交点是M(0,2)
∵点A(﹣1,2),M(0,2)两点的纵坐标相等,
∴直线AM平行于x轴.
②当P2(﹣2,﹣2)在抛物线上时,由4a+2(a+1)+1﹣2a=﹣2,
解得a=﹣,这时抛物线的解析式为y=﹣x2+x+,它与y轴的交点是M(0,)显然A、M两点的纵坐标不相等,
∴直线AM与x轴相交,
综上所述,当P1(1,1)在抛物线y=ax2+bx+c上时,直线AM平行x轴;当P2(﹣2,﹣2)在抛物线y=ax2+bx+c上时,直线AM与x轴相交.
三.平行四边形的性质(共1小题)
6.(2002•南通)已知:如图,四边形ABCD是平行四边形,且∠EAD=∠BAF.
(1)求证:△CEF是等腰三角形;
(2)△CEF的哪两边之和恰好等于▱ABCD的周长?证明你的结论.
【答案】见试题解答内容
【解答】(1)证明:在平行四边形ABCD中,AB∥CD,AD∥BC,
∴∠EAD=∠F,∠BAF=∠E.
又∠EAD=∠BAF,
∴∠E=∠F.
∴CE=CF.
即△CEF是等腰三角形.
(2)解:△CEF中,CE和CF的和恰好等于平行四边形的周长.
证明如下:由(1)得∠EAD=∠F=∠BAF=∠E,
∴DE=AD,AB=BF.
∴CE+CF=CD+AD+CB+AB.
即CE与CF的和等于平行四边形的周长.
四.四边形综合题(共2小题)
7.(2021•南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.
(1)求∠BCF的大小(用含α的式子表示);
(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;
(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.
【答案】见试题解答内容
【解答】解:(1)如图1,连接BF,
∵点A关于直线BE的对称点为点F,
∴AB=BF,BE⊥AF,
∴∠ABE=∠EBF=α,
∴∠CBF=90°﹣2α,
∵四边形ABCD是正方形,
∴AB=BC,
∴BF=BC,
∴∠BCF==45°+α;
(2)DG∥CF,
理由如下:如图2,连接AC,
∵四边形ABCD是正方形,
∴∠ACD=45°,∠ADC=90°,
∵CG⊥AF,
∴∠CGA=∠ADC=90°,
∴点A,点D,点G,点C四点共圆,
∴∠AGD=∠ACD=45°,
∵AB=BF,∠ABF=2α,
∴∠AFB==90°﹣α,
∴∠AFC=135°,
∴∠CFG=45°=∠DGA,
∴DG∥CF;
(3)∵BE>AB,
∴BH>BF,
∴BH≠BF;
如图3,当BH=FH时,过点H作HN⊥BF于N,
∵将△ABE绕点B顺时针旋转90°得到△CBH,
∴△ABE≌△CBH,∠EBH=90°=∠ABC,
∴AE=CH,BE=BH,∠ABE=∠CBH=α=∠FBE,AB=BC,
∴∠HBF=90°﹣α,
∵BH=FH,HN⊥BF,
∴BN=NF=BF=AB,∠BNH=90°=∠BAE,
∴∠BHN=α,
∴∠ABE=∠BHN,
∴△ABE≌△NHB(ASA),
∴BN=AE=AB,
∴BE==AE,
∴sinα==,
当BF=FH时,
∴∠FBH=∠FHB=90°﹣α,
∴∠BFH=2α=∠ABF,
∴AB∥FH,
即点F与点C重合,则点E与点D重合,
∵点E在边AD上(不与端点A,D重合),
∴BF=FH不成立,
综上所述:sinα的值为.
8.(2022•南通)如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.
(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;
(2)当AE=3时,求CF的长;
(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.
【答案】(1)证明见解析部分;
(2)或;
(3).
【解答】(1)证明:如图1中,作FM⊥AC,垂足为M,
∵四边形ABCD是矩形,
∴∠B=90°,
∵FM⊥AC,
∴∠B=∠AMF=90°,
∵∠BAC=∠EAF,
∴∠BAE=∠MAF,
在△ABE和△AMF中,
,
∴△ABE≌△AMF(AAS),
∴AB=AM;
(2)解:当点E在BC上,在Rt△ABE中,AB=4,AE=3,
∴BE===,
∵△ABE≌△AMF,
∴AB=AM=4,FM=BE=,
在Rt△ABC中,AB=4,BC=3,
∴AC===5,
∴CM=AC﹣AM=5﹣4=1,
∵∠CMF=90°,
∴CF===.
当点E在CD上时,可得CF=.
综上所述,CF的值为或;
(3)解:当点E在BC上时,如图2中,过点D作DH⊥FM于点H.
∵△ABE≌△AMF,
∴AM=AB=4,
∵∠AMF=90°,
∴点F在射线FM上运动,当点F与K重合时,DF的值最小,
∵∠CMJ=∠ADC=90°,∠MCJ=∠ACD,
∴△CMJ∽△CDA,
∴==,
∴==,
∴MJ=,CJ=,
∴DJ=CD﹣CJ=4﹣=,
∵∠CMJ=∠DHJ=90°,∠CJM=∠DJH,
∴△CMJ∽△DHJ,
∴=,
∴=,
∴DH=,
∴DF的最小值为.
当点E在线段CD上时,如图3中,将线段AD绕点A顺时针旋转,旋转角为∠BAC,得到线段AR,连接FR,过点D作DQ⊥AR于点Q,DK⊥FR于点K.
∵∠EAF=∠BAC,∠DAR=∠BAC,
∴∠DAE=∠RAF,
∵AE=AF,AD=AR,
∴△ADE≌△ARF(SAS),
∴∠ADE=∠ARF=90°,
∴点F在直线RF上运动,当点D与K重合时,DF的值最小,
∵DQ⊥AR,DK⊥RF,
∴∠R=∠DQR=∠DKR=90°,
∴四边形DKRQ是矩形,
∴DK=QR,
∴AQ=AD•cos∠BAC=3×=,
∵AR=AD=3,
∴DK=QR=AR﹣AQ=,
∴DF的最小值为,
∵<,
∴DF的最小值为.
解法二:当点E在BC上时,如图,将线段AD绕点A逆时针旋转,旋转角的度数=∠BAC,得到AT,连接DT,ET,DF.
证明△DAF≌△TAE,推出DF=TE,
当TE⊥BC时,DF的值最小,可得DF的最小值为.
当点E在CD上时,同法可得DF的最小值为.
五.切线的性质(共1小题)
9.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.
(1)求证:四边形ODCE是菱形;
(2)若⊙O的半径为2,求图中阴影部分的面积.
【答案】(1)证明过程见解答;
(2)图中阴影部分的面积为﹣2.
【解答】(1)证明:连接OC,
∵⊙O和底边AB相切于点C,
∴OC⊥AB,
∵OA=OB,∠AOB=120°,
∴∠AOC=∠BOC=∠AOB=60°,
∵OD=OC,OC=OE,
∴△ODC和△OCE都是等边三角形,
∴OD=OC=DC,OC=OE=CE,
∴OD=CD=CE=OE,
∴四边形ODCE是菱形;
(2)解:连接DE交OC于点F,
∵四边形ODCE是菱形,
∴OF=OC=1,DE=2DF,∠OFD=90°,
在Rt△ODF中,OD=2,
∴DF===,
∴DE=2DF=2,
∴图中阴影部分的面积=扇形ODE的面积﹣菱形ODCE的面积
=﹣OC•DE
=﹣×2×2
=﹣2,
∴图中阴影部分的面积为﹣2.
六.相似形综合题(共1小题)
10.(2023•南通)正方形ABCD中,点E在边BC,CD上运动(不与正方形顶点重合).作射线AE,将射线AE绕点A逆时针旋转45°,交射线CD于点F.
(1)如图,点E在边BC上,BE=DF,则图中与线段AE相等的线段是 AF ;
(2)过点E作EG⊥AF,垂足为G,连接DG,求∠GDC的度数;
(3)在(2)的条件下,当点F在边CD延长线上且DF=DG时,求的值.
【答案】(1)AF;
(2)45°或135°;
(3)﹣1.
【解答】解:(1)∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵BE=BF,
∴△ABE≌△ADF(SAS),
∴AE=AF,
故答案为:AF;
(2)当E点在BC边上时,如图1,
过G点作GM⊥AD交于M,延长MG交BC于N点,
∴∠AMG=∠DMG=∠GNE=90°,
∴四边形CDMN是矩形,
∴∠AGM+∠MAG=90°,
∵EG⊥AF,∠EAF=45°,
∴∠AGM+∠EGN=90°,
∵∠AGE=90°,∠EAF=45°,
∴△AEG是等腰直角三角形,
∴AG=EG,
∴∠EGN=∠MAG,
∴△AMG≌△GNE(AAS),
∴AM=GN,
∵AM+MD=GN+MG,
∴MD=MG,
∴△MDG为等腰直角三角形,
∴∠MDG=45°,
∴∠GDC=45°;
当点E在CD边上时,如图2,
过点G作GN⊥DF交于N,延长NG交BA延长线于点M,
∴四边形ADNM是矩形,
同理,△AMG≌△GNE(AAS),
∴GN=AM=DN,
∴△NDG为等腰直角三角形,
∴∠GDN=45°,
∴∠GDC=180°﹣45°=135°,
综上所述:∠GDC的度数为45°或135°;
(3)当点F在CD边延长线上时,点E在边CD上,
设GN=DN=a,则DG=a,
∴DF=DG=a,
∴FN=DF﹣DN=(﹣1)a,
∵GN∥AD,
∴==﹣1.
陕西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类,共18页。试卷主要包含了,与y轴的交点为C,,与y轴交于点C,,它的对称轴为直线l,问题提出等内容,欢迎下载使用。
江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共14页。试卷主要包含了当x=﹣1时,求的值,计算,已知,【阅读材料】等内容,欢迎下载使用。
江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共16页。试卷主要包含了,其中x=﹣;,解方程组,计算,之间的关系如图所示等内容,欢迎下载使用。