|课件下载
搜索
    上传资料 赚现金
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册
    立即下载
    加入资料篮
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册01
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册02
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册03
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册04
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册05
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册06
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册07
    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册08
    还剩25页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册

    展开
    这是一份新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册,共33页。

    第1章培优课 数列求和1.掌握数列求和的方法;2.能够根据给定的数列,选择恰当的方法求和.重难探究·能力素养全提升学以致用·随堂检测全达标目录索引 重难探究·能力素养全提升探究点一 公式法求和【例1】 已知数列{bn}满足b1=1,bn+1= bn.(1)求{bn}的通项公式;(2)求b2+b4+b6+…+b2n的值.分析根据题意,判断出数列{bn}是等比数列,然后根据等比数列求和公式直接求解.规律方法 公式法求和主要是利用以下两个基本公式:(1)等差数列的前n项和公式变式训练1在等差数列{an}中,公差d>0,其前n项和为Sn,且a2a3=45,a1+a4=14.(1)求Sn;探究点二 裂项相消法求和【例2】 已知各项均为正数的数列{an}的前n项和为Sn,2Sn= +an-2 (n∈N+).(1)求证:数列{an}为等差数列;(2)记bn= ,求数列{bn}的前n项和Tn.分析(1)利用an=Sn-Sn-1(n≥2),即可证明数列{an}为等差数列;(2)结合(1)中结论,利用裂项相消法即可求解.两式相减,化简整理得(an+an-1)(an-an-1-1)=0(n≥2),由an>0,得an-an-1=1(n≥2).当n=1时,2S1= +a1-2,得a1=2(负值舍去),故数列{an}是首项为2,公差为1的等差数列.规律方法 裂项相消法求和裂项相消法求和的实质是将数列中的项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.(2)消项规律:消项后前边剩几项,后边就剩几项;前边剩第几项,后边就剩倒数第几项.(3)常见的裂项方法 变式训练2已知数列{an},其前n项和记为Sn,满足a2+a4=10,an+2=Sn+1-Sn.(1)求数列{an}的通项公式;解 (1)因为Sn+1-Sn=an+1=an+2,所以an+1-an=2,即{an}是等差数列,且公差d=2.又a2+a4=2a1+4d=10,所以a1=1,所以an=1+2(n-1)=2n-1,即an=2n-1.探究点三 分组求和法【例3】 已知数列{an}是等差数列,且a8=1,S16=24.(1)求数列{an}的通项公式an;(2)若等比数列{bn}是递增数列,且b1+b4=9,b2b3=8,求(a1+b1)+(a3+b3)+(a5+b5)+…+(a2n-1+b2n-1).分析 设数列{an}的公差为d,根据已知条件列关于a1和d的方程组,解方程组可得a1和d的值,即可得{an}的通项公式an;由等比数列的性质求得b1和b4的值,进而可得数列{bn}的公比和通项公式,最后分组求和.解 (1)设等差数列{an}的公差为d, 所以an=-6+(n-1)=n-7. 规律方法 分组求和法的解题策略当一个数列本身不是等差数列也不是等比数列,但如果它的通项公式可以拆分为几项的和,而这些项又构成等差数列或等比数列时,就可以用分组求和法,即原数列的前n项和等于拆分成的每个数列前n项和的和.变式训练3在等差数列{an}中,a2+a6=-20,前10项和S10=-145.(1)求数列{an}的通项公式;(2)若数列{an+bn}是首项为1,公比为2的等比数列,求{bn}的前8项和.解 (1)设等差数列{an}的公差为d, 所以an=a1+(n-1)d=-3n+2. (2)由题意,an+bn=1×2n-1=2n-1,所以bn=2n-1+3n-2.所以{bn}的前8项和为(1+2+22+…+27)+(1+4+7+…+22)= =255+92=347.探究点四 并项转化法求和【例4】 已知数列-1,4,-7,10,…,(-1)n·(3n-2),…,求其前n项和Sn.分析 该数列中正负项交替出现,且各项的绝对值构成等差数列,故可用并项转化法求和.变式探究本例中,将条件改为“已知数列{an}的前n项和Sn=1-5+9-13+…+(-1)n-1·(4n-3)”,求S15+S22-S31的值.所以S15=29,S22=-44,S31=61.故S15+S22-S31=-76.规律方法 并项转化法求和的解题策略(1)一般地,当数列中的各项正负交替,且各项的绝对值成等差数列时,可以采用并项转化法求和.(2)在利用并项转化法求和时,因为数列的各项是正负交替的,所以一般需要对项数n进行分类讨论,最终的结果往往可以用分段形式来表示.探究点五 分类讨论法求解分段表示的数列的和【例5】 已知在数列{an}中,an= 其前n项和为Sn.求:(1)S8,S15;(2)Sn.分析数列的通项公式为分段函数的形式,因此该数列的奇、偶项呈现不同的规律,奇数项是首项为1,公差为4的等差数列,偶数项为首项为9,公比为9的等比数列,在求和时,应对奇数项和偶数项分别求和.规律方法 分段表示的数列的和的求法分段表示的数列求和的技巧性很强,一般是转化为等差数列与等比数列求解.解题时需要对数列的项数进行分类讨论.需要特别说明的是在分段表示的数列中,规律是隔项成等差数列或成等比数列,因此数列的公差或公比与平时的公差、公比有所不同,解题时要特别留意.变式训练4已知正项等比数列{an}的前n项和为Sn,S3=7a1,且a1,a2+2,a3成等差数列.(1)求{an}的通项公式;解 (1)设公比为q,因为S3=7a1,所以a1(1+q+q2)=7a1,又因为a1>0,所以1+q+q2=7,解得q=2或q=-3(舍).因为a1,a2+2,a3成等差数列,所以2(a2+2)=a1+a3,即2(2a1+2)=a1+4a1,解得a1=4.所以{an}的通项公式为an=4×2n-1=2n+1.学以致用·随堂检测全达标123451.数列{an}的前n项和为Sn,已知Sn=1-2+3-4+…+(-1)n-1·n,则S27=(  )A.-13 B.13 C.14 D.-14C解析 S27=1-2+3-4+5-6+…+25-26+27=(1-2)+(3-4)+(5-6)+…+(25-26) +27=27-13=14.12345B12345C123454.已知在数列{an}中,a1=1,an=an-1+ (n≥2),则数列{an}的前9项和S9等于     . 27123455.在各项都是正数的等比数列{an}中,a1=1,a9=4a7.(1)求数列{an}的通项公式;(2)记Sn为数列{an}的前n项和,若Sm=31,求正整数m的值.解 (1)设等比数列{an}的公比为q,∵在各项都是正数的等比数列{an}中,a1=1,a9=4a7,∴数列{an}的通项公式an=2n-1.
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材2023_2024学年高中数学第1章数列培优课数列求和课件湘教版选择性必修第一册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map