


所属成套资源:鲁教版(五四制)数学八年级上册教案
初中数学鲁教版 (五四制)八年级上册3 公式法教学设计
展开
这是一份初中数学鲁教版 (五四制)八年级上册3 公式法教学设计,共8页。教案主要包含了课堂练习,课时小结,课后作业等内容,欢迎下载使用。
1.3.2 公式法●教学目标(一)教学知识点1.使学生会用完全平方公式分解因式.2.使学生学习多步骤,多方法的分解因式.(二)能力训练要求在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.(三)情感与价值观要求通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力.●教学重点让学生掌握多步骤、多方法分解因式方法.●教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式.●教学方法观察—发现—运用法●教具准备投影片两张第一张(记作§1.3.2 A)第二张(记作§1.3.2 B)●教学过程Ⅰ.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a+b)(a-b)=a2-b2而且还学习了完全平方公式(a±b)2=a2±2ab+b2本节课,我们就要学习用完全平方公式分解因式.Ⅱ.新课1.推导用完全平方公式分解因式的公式以及公式的特点.[师]由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?[生]可以.将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.便得到用完全平方公式分解因式的公式.[师]很好.那么什么样的多项式才可以用这个公式分解因式呢?请大家互相交流,找出这个多项式的特点.[生]从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解.[师]左边的特点有(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方.形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.投影(§1.3.2 A) 练一练下列各式是不是完全平方式?(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.[师]判断一个多项式是否为完全平方式,要考虑三个条件,项数是三项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍.[生](1)是.(2)不是;因为4x不是x与2y乘积的2倍;(3)是;(4)不是.ab不是a与b乘积的2倍.(5)不是,x2与-9的符号不统一.(6)是.2.例题讲解[例1]把下列完全平方式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m +n)+9.[师]分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是多项式.解:(1)x2+14x+49=x2+2×7x+72=(x+7)2(2)(m +n)2-6(m +n)+9=(m +n)2-2·(m +n)×3+32=[(m +n)-3]2=(m +n-3)2.[例2]把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.[师]分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式.如果三项中有两项能写成两数或式的平方,但符号不是“+”号时,可以先提取“-”号,然后再用完全平方公式分解因式.解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)-x2-4y2+4xy=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2Ⅲ.课堂练习a.随堂练习1.解:(1)是完全平方式x2-x+=x2-2·x·+()2=(x-)2(2)不是完全平方式,因为3ab不符合要求.(3)是完全平方式m2+3 m n+9n2=( m)2+2× m×3n+(3n)2=( m +3n)2(4)不是完全平方式2.解:(1)x2-12xy+36y2=x2-2·x·6y+(6y)2=(x-6y)2;(2)16a4+24a2b2+9b4=(4a2)2+2·4a2·3b2+(3b2)2=(4a2+3b2)2(3)-2xy-x2-y2=-(x2+2xy+y2)=-(x+y)2;(4)4-12(x-y)+9(x-y)2=22-2×2×3(x-y)+[3(x-y)]2=[2-3(x-y)]2=(2-3x+3y)2b.补充练习投影片(§1.3.2 B)把下列各式分解因式:(1)4a2-4ab+b2;(2)a2b2+8abc+16c2;(3)(x+y)2+6(x+y)+9;(4)-+n2;(5)4(2a+b)2-12(2a+b)+9;(6)x2y-x4-解:(1)4a2-4ab+b2=(2a)2-2·2a·b+b2=(2a-b)2;(2)a2b2+8abc+16c2=(ab)2+2·ab·4c+(4c)2=(ab+4c)2;(3)(x+y)2+6(x+y)+9=(x+y+3)2;(4)-+n2=()2-2××n+n2=(-n)2;(5)4(2a+b)2-12(2a+b)+9=[2(2a+b)]2-2×2(2a+b)×3+32=[2(2a+b)-3]2=(4a+2b-3)2;(6)x2y-x4- =-(x4-x2y+)=-[(x2)2-2·x2·+()2]=-(x2-)2Ⅳ.课时小结这节课我们学习了用完全平方公式分解因式.它与平方差公式不同之处是:(1)要求多项式有三项.(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式.Ⅴ.课后作业习题1.51.解:(1)x2y2-2xy+1=(xy-1)2;(2)9-12t+4t2=(3-2t)2;(3)y2+y+=(y+)2;(4)25m2-80 m +64=(5 m-8)2;(5)+xy+y2=(+y)2;(6)a2b2-4ab+4=(ab-2)22.解:(1)(x+y)2+6(x+y)+9=[(x+y)+3]2=(x+y+3)2;(2)a2-2a(b+c)+(b+c)2=[a-(b+c)]2=(a-b-c)2;(3)4xy2-4x2y-y3=y(4xy-4x2-y2)=-y(4x2-4xy+y2)=-y(2x-y)2;(4)-a+2a2-a3=-(a-2a2+a3)=-a(1-2a+a2)=-a(1-a)2.3.满足条件的单项式可以是2x(还可以是-2x)4.解:设两个奇数分别为x、x-2,得x2-(x-2)2=[x+(x-2)][x-(x-2)]=(x+x-2)(x-x+2)=2(2x-2)=4(x-1)因为x为奇数,所以x-1为偶数,因此4(x-1)能被8整除.Ⅵ.活动与探究写出一个三项式,再把它分解因式(要求三项式含有字母a和b,分数、次数不限,并能先用提公因式法,再用公式法分解因式.分析:本题属于答案不固定的开放性试题,所构造的多项式同时具备条件:①含字母a和b;②三项式;③可提公因式后,再用公式法分解.参考答案:4a3b-4a2b2+ab3=ab(4a2-4ab+b2)=ab(2a-b)2●板书设计§1.3.2 公式法一、1.推导用完全平方公式分解因式的公式以及公式的特点投影片(§1.3.2 A)2.例题讲解例1、例2二、课堂练习a.随堂练习b.补充练习(投影片§1.3.2 B)三、课时小结四、课后作业●备课资料参考练习把下列各式分解因式1.-4xy-4x2-y2;2.3ab2+6a2b+3a3;3.(s+t)2-10(s+t)+25;4.0.25a2b2-abc+c2;5.x2y-6xy+9y;6.2x3y2-16x2y+32x;7.16x5+8x3y2+xy4参考答案:解:1.-4xy-4x2-y2=-(4x2+4xy+y2)=-(2x+y)2;2.3ab2+6a2b+3a3=3a(b2+2ab+a2)=3a(a+b)2;3.(s+t)2-10(s+t)+25=[(s+t)-5]2=(s+t-5)2;4.0.25a2b2-abc+c2=(0.5ab-c)2;5.x2y-6xy+9y=y(x2-6x+9)=y(x-3)2;6.2x3y2-16x2y+32x=2x(x2y2-8xy+16)=2x(xy-4)2;7.16x5+8x3y2+xy4=x(16x4+8x2y2+y4)=x(4x2+y2)2.
相关教案
这是一份鲁教版 (五四制)八年级上册2 图形的旋转教学设计,共3页。教案主要包含了学习目标,学习方法,学习重难点,学习过程等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)八年级上册1 图形的平移教学设计及反思,共3页。教案主要包含了自学指导与对应训练,当堂检测等内容,欢迎下载使用。
这是一份鲁教版 (五四制)八年级上册1 平均数教案,共4页。教案主要包含了学生知识状况分析,教学任务分析,教学过程设计,教学反思等内容,欢迎下载使用。
