搜索
    上传资料 赚现金
    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
    立即下载
    加入资料篮
    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)01
    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)02
    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

    展开
    这是一份湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共26页。试卷主要包含了﹣1,我们不妨约定等内容,欢迎下载使用。

    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    一.实数的运算(共1小题)
    1.(2023•长沙)计算:|﹣|+(﹣2023)0﹣2sin45°﹣()﹣1.
    二.一元一次不等式的应用(共1小题)
    2.(2023•长沙)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共16个班级参加.
    (1)比赛积分规定:每场比赛都要分出胜负,胜一场积3分,负一场积1分.某班级在15场比赛中获得总积分为41分,问该班级胜负场数分别是多少?
    (2)投篮得分规则:在3分线外投篮,投中一球可得3分,在3分线内(含3分线)投篮,投中一球可得2分,某班级在其中一场比赛中,共投中26个球(只有2分球和3分球),所得总分不少于56分,问该班级这场比赛中至少投中了多少个3分球?
    三.二次函数综合题(共3小题)
    3.(2023•长沙)我们约定:若关于x的二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2同时满足+(b2+b1)2+|c2﹣a1|=0,(b1﹣b2)2023≠0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:
    (1)若关于x的二次函数y1=2x2+kx+3与y2=mx2+x+n互为“美美与共”函数,求k,m,n的值;
    (2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图象上运动,函数y2与y1互为“美美与共”函数.
    ①求函数y2的图象的对称轴;
    ②函数y2的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;
    (3)在同一平面直角坐标系中,若关于x的二次函数y1=ax2+bx+c与它的“美美与共”函数y2的图象顶点分别为点A,点B,函数y1的图象与x轴交于不同两点C,D,函数y2的图象与x轴交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.
    4.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.
    (1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;
    ②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;
    (2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;
    (3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.
    5.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
    (1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r=   ,s=   ,t=   (将正确答案填在相应的横线上);
    (2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;
    (3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
    四.全等三角形的判定与性质(共1小题)
    6.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.
    (1)求证:△ABE≌△ACD;
    (2)若AE=6,CD=8,求BD的长.

    五.平行四边形的性质(共2小题)
    7.(2023•长沙)如图,在▱ABCD中,DF平分∠ADC,交BC于点E,交AB的延长线于点F.
    (1)求证:AD=AF;
    (2)若AD=6,AB=3,∠A=120°,求BF的长和△ADF的面积.

    8.(2022•长沙)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.
    (1)求证:AC⊥BD;
    (2)若点E,F分别为AD,AO的中点,连接EF,EF=,AO=2,求BD的长及四边形ABCD的周长.

    六.矩形的判定与性质(共1小题)
    9.(2021•长沙)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.
    (1)求证:▱ABCD是矩形;
    (2)求AD的长.

    七.圆的综合题(共2小题)
    10.(2023•长沙)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC=∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC的延长线于点N,交⊙O于点M(点M在劣弧上).
    (1)BD是⊙O的切线吗?请作出你的判断并给出证明;
    (2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tanD)2的值;
    (3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.

    11.(2021•长沙)如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.
    (1)求sin∠AOQ的值;
    (2)求的值;
    (3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.

    八.解直角三角形的应用-仰角俯角问题(共1小题)
    12.(2023•长沙)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8km,仰角为30°;10s后飞船到达B处,此时测得仰角为45°.
    (1)求点A离地面的高度AO;
    (2)求飞船从A处到B处的平均速度.(结果精确到0.1km/s,参考数据:≈1.73)

    九.频数(率)分布直方图(共1小题)
    13.(2023•长沙)为增强学生安全意识,某校举行了一次全校3000名学生参加的安全知识竞赛.从中随机抽取n名学生的竞赛成绩进行了分析,把成绩(满分100分,所有竞赛成绩均不低于60分)分成四个等级(D:60≤x<70;C:70≤x<80;B:80≤x<90;A:90≤x≤100),并根据分析结果绘制了不完整的频数分布直方图和扇形统计图.

    请根据以上信息,解答下列问题:
    (1)填空:n=   ,m=   ;
    (2)请补全频数分布直方图;
    (3)扇形统计图中B等级所在扇形的圆心角度数为    度;
    (4)若把A等级定为“优秀”等级,请你估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数.
    一十.列表法与树状图法(共1小题)
    14.(2022•长沙)2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题为“推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.
    成绩x/分
    频数
    频率
    60≤x<70
    15
    0.1
    70≤x<80
    a
    0.2
    80≤x<90
    45
    b
    90≤x<100
    60
    c
    (1)表中a=   ,b=   ,c=   ;
    (2)请补全频数分布直方图;
    (3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.


    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.实数的运算(共1小题)
    1.(2023•长沙)计算:|﹣|+(﹣2023)0﹣2sin45°﹣()﹣1.
    【答案】﹣1.
    【解答】解:原式=+1﹣2×﹣2
    =+1﹣﹣2
    =﹣1.
    二.一元一次不等式的应用(共1小题)
    2.(2023•长沙)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共16个班级参加.
    (1)比赛积分规定:每场比赛都要分出胜负,胜一场积3分,负一场积1分.某班级在15场比赛中获得总积分为41分,问该班级胜负场数分别是多少?
    (2)投篮得分规则:在3分线外投篮,投中一球可得3分,在3分线内(含3分线)投篮,投中一球可得2分,某班级在其中一场比赛中,共投中26个球(只有2分球和3分球),所得总分不少于56分,问该班级这场比赛中至少投中了多少个3分球?
    【答案】(1)该班级胜负场数分别是13场和2场;
    (2)该班级这场比赛中至少投中了4个3分球.
    【解答】解:(1)设胜了x场,负了y场,
    根据题意得:,
    解得,
    答:该班级胜负场数分别是13场和2场;
    (2)设班级这场比赛中投中了m个3分球,则投中了(26﹣m)个2分球,
    根据题意得:3m+2(26﹣m)≥56,
    解得m≥4,
    答:该班级这场比赛中至少投中了4个3分球.
    三.二次函数综合题(共3小题)
    3.(2023•长沙)我们约定:若关于x的二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2同时满足+(b2+b1)2+|c2﹣a1|=0,(b1﹣b2)2023≠0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:
    (1)若关于x的二次函数y1=2x2+kx+3与y2=mx2+x+n互为“美美与共”函数,求k,m,n的值;
    (2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图象上运动,函数y2与y1互为“美美与共”函数.
    ①求函数y2的图象的对称轴;
    ②函数y2的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;
    (3)在同一平面直角坐标系中,若关于x的二次函数y1=ax2+bx+c与它的“美美与共”函数y2的图象顶点分别为点A,点B,函数y1的图象与x轴交于不同两点C,D,函数y2的图象与x轴交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.
    【答案】(1)k的值为﹣1,m的值为3,n的值为2.
    (2)①函数y2的图象的对称轴为x=﹣.
    ②函数y2的图象过定点(0,1),().
    (3)当CD=EF时,以A,B,C,D为顶点的四边形能构成正方形,该正方形面积的取值范围为S>2.
    【解答】解:(1)由题意可知,a2=c2,a1=c2,b1=﹣b2≠0,
    ∴m=3,n=2,k=﹣1.
    答:k的值为﹣1,m的值为3,n的值为2.
    (2)①∵点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图象上运动,
    ∴对称轴为x=,
    ∴s=﹣3r,
    ∴,
    ∴对称轴为x=.
    答:函数y2的图象的对称轴为x=﹣.
    ②,
    令3x2+2x=0,
    解得,
    ∴过定点(0,1),().
    答:函数y2的图象过定点(0,1),().
    (3)由题意可知,,
    ∴,
    ∴CD=,EF=,
    ∵CD=EF且b2﹣4ac>0,
    ∴|a|=|c|.
    1°若a=﹣c,则,
    要使以A,B,C,D为顶点的四边形能构成正方形,
    则△CAD,△CBD为等腰直角三角形,
    ∴CD=2|yA|,
    ∴,
    ∴,
    ∴b2+4a2=4,
    ∴,
    ∵b2=4﹣4a2>0,
    ∴0<a2<1,
    ∴S正>2,

    2°若a=c,则A、B关于y轴对称,以A,B,C,D为顶点的四边形不能构成正方形,
    综上,当a=﹣c时,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.
    4.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.
    (1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;
    ②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;
    (2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;
    (3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.
    【答案】(1)①h=2022;
    ②h=±k;
    (2)h的最大值为;
    (3)存在,k的值为﹣.
    【解答】解:(1)①∵t=1,
    ∴≤x≤,
    ∵函数y=4044x,
    ∴函数的最大值M=6066,函数的最小值N=2022,
    ∴h=2022;
    ②当k>0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b,有最小值N=kt﹣k+b,
    ∴h=k;
    当k<0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b,有最小值N=kt+k+b,
    ∴h=﹣k;
    综上所述:h=|k|;
    (2)t﹣≥1,即t≥,
    函数y=(x≥1)最大值M=,最小值N=,
    ∴h=,
    当t=时,h有最大值;
    (3)存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值,理由如下:
    ∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k,
    ∴函数的对称轴为直线x=2,y的最大值为4+k,
    ①当2≤t﹣时,即t≥,
    此时M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,
    ∴h=t﹣2,
    此时h的最小值为;
    ②当t+≤2时,即t≤,
    此时N=﹣(t﹣﹣2)2+4+k,M=﹣(t+﹣2)2+4+k,
    ∴h=2﹣t,
    此时h的最小值为;
    ③当t﹣≤2≤t,即2≤t≤,
    此时N=﹣(t+﹣2)2+4+k,M=4+k,
    ∴h=(t﹣)2,
    ∴h的最小值为;
    ④当t<2≤t+,即≤t<2,
    此时N=﹣(t﹣﹣2)2+4+k,M=4+k,
    ∴h=(t﹣)2,
    ∴h的最小值为;
    h的函数图象如图所示:h的最小值为,
    由题意可得=4+k,
    解得k=﹣;
    综上所述:k的值为﹣.

    5.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
    (1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r= 4 ,s= ﹣1 ,t= 4 (将正确答案填在相应的横线上);
    (2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;
    (3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
    【答案】(1)r=4,s=﹣1,t=4;
    (2)当k=0时是“T函数”,当k≠0时不是“T函数”;
    (3)(1,0).
    【解答】解:(1)∵A,B关于y轴对称,
    ∴s=﹣1,r=4,
    ∴A的坐标为(1,4),
    把A(1,4)代入是关于x的“T函数”中,得:t=4,
    故答案为r=4,s=﹣1,t=4;
    (2)当k=0时,有y=p,
    此时存在关于y轴对称的点,
    ∴y=kx+p是“T函数”,且有无数对“T”点,
    当k≠0时,不存在关于y轴对称的点,
    若存在,设其中一点(x0,kx0+p),则对称点(﹣x0,﹣kx0+p),
    ∴kx0+p=﹣kx0+p,
    ∴k=0,与k≠0矛盾,
    ∴不存在,
    ∴y=kx+p不是“T函数”;
    (3)∵y=ax2+bx+c过原点,
    ∴c=0,
    ∵y=ax2+bx+c是“T函数”,
    ∴b=0,
    ∴y=ax2,
    联立直线l和抛物线得:

    即:ax2﹣mx﹣n=0,
    ,,
    又∵,
    化简得:x1+x2=x1x2,
    ∴,即m=﹣n,
    ∴y=mx+n=mx﹣m,
    当x=1时,y=0,
    ∴直线l必过定点(1,0).
    四.全等三角形的判定与性质(共1小题)
    6.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.
    (1)求证:△ABE≌△ACD;
    (2)若AE=6,CD=8,求BD的长.

    【答案】(1)见解答;
    (2)4.
    【解答】(1)证明:∵CD⊥AB,BE⊥AC,
    ∴∠AEB=∠ADC=90°,
    在△ABE和△ACD中,

    ∴△ABE≌△ACD(AAS);
    (2)解:∵△ABE≌△ACD,
    ∴AD=AE=6,
    在Rt△ACD中,AC===10,
    ∵AB=AC=10,
    ∴BD=AB﹣AD=10﹣6=4.
    五.平行四边形的性质(共2小题)
    7.(2023•长沙)如图,在▱ABCD中,DF平分∠ADC,交BC于点E,交AB的延长线于点F.
    (1)求证:AD=AF;
    (2)若AD=6,AB=3,∠A=120°,求BF的长和△ADF的面积.

    【答案】(1)见解析;
    (2)3,9.
    【解答】(1)证明:在▱ABCD中,∵AB∥CD,
    ∴∠CDE=∠F,
    ∵DF平分∠ADC,
    ∴∠ADE=∠CDE,
    ∴∠F=∠ADF,
    ∴AD=AF,
    (2)解:∵AD=AF=6,AB=3,
    ∴BF=AF﹣AB=3;
    过D作DH⊥AF交FA的延长线于H,

    ∵∠BAD=120°,
    ∴∠DAH=60°,
    ∴∠ADH=30°,
    ∴AH=,
    ∴=3,
    ∴△ADF的面积=.
    8.(2022•长沙)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.
    (1)求证:AC⊥BD;
    (2)若点E,F分别为AD,AO的中点,连接EF,EF=,AO=2,求BD的长及四边形ABCD的周长.

    【答案】(1)证明见解析;
    (2)BD=6,菱形ABCD的周长=4.
    【解答】(1)证明:∵四边形ABCD是平行四边形,AB=AD,
    ∴▱ABCD是菱形,
    ∴AC⊥BD;
    (2)解:∵点E,F分别为AD,AO的中点,
    ∴EF是△AOD的中位线,
    ∴OD=2EF=3,
    由(1)可知,四边形ABCD是菱形,
    ∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,
    在Rt△AOD中,由勾股定理得:AD===,
    ∴菱形ABCD的周长=4AD=4.
    六.矩形的判定与性质(共1小题)
    9.(2021•长沙)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.
    (1)求证:▱ABCD是矩形;
    (2)求AD的长.

    【答案】见试题解答内容
    【解答】(1)证明:∵△AOB为等边三角形,
    ∴∠BAO=∠AOB=60°,OA=OB,
    ∵四边形ABCD是平行四边形,
    ∴OB=OD=BD,OA=OC=AC,
    ∴BD=AC,
    ∴▱ABCD是矩形;
    (2)解:∵▱ABCD是矩形,
    ∴∠BAD=90°,
    ∵∠ABO=60°,
    ∴∠ADB=90°﹣60°=30°,
    ∴AD=AB=4.
    七.圆的综合题(共2小题)
    10.(2023•长沙)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC=∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC的延长线于点N,交⊙O于点M(点M在劣弧上).
    (1)BD是⊙O的切线吗?请作出你的判断并给出证明;
    (2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tanD)2的值;
    (3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.

    【答案】(1)BD是⊙O的切线;理由略;
    (2);
    (3)y=x,0<x≤1.
    【解答】解:(1)BD是⊙O的切线.
    证明:如图,在△ABC中,AB2=BC2+AC2,
    ∴∠ACB=90°.
    又点A,B,C在⊙O上,
    ∴AB是⊙O的直径.
    ∵∠ACB=90°,
    ∴∠CAB+∠ABC=90°.
    又∠DBC=∠CAB,
    ∴∠DBC+∠ABC=90°.
    ∴∠ABD=90°.
    ∴BD是⊙O的切线.
    (2)由题意得,S1=BC•CD,S2=BC•AC,S=AD•BC.
    ∵S1•S=(S2)2,
    ∴BC•CD•AD•BC=(BC•AC)2.
    ∴CD•AD=AC2.
    ∴CD(CD+AC)=AC2.
    又∵∠D+∠DBC=90°,∠ABC+∠A=90°,∠DBC=∠A,
    ∴∠D=∠ABC.
    ∴tan∠D==tan∠ABC=.
    ∴CD=.
    又CD(CD+AC)=AC2,
    ∴+BC2=AC2.
    ∴BC4+AC2•BC2=AC4.
    ∴1+()2=()4.
    由题意,设(tan∠D)2=m,
    ∴()2=m.
    ∴1+m=m2.
    ∴m=.
    ∵m>0,
    ∴m=.
    ∴(tan∠D)2=.
    (3)设∠A=α,
    ∵∠A+∠ABC=∠ABC+∠DBC=∠ABC+∠N=90°,
    ∴∠A=∠DBC=∠N=α.
    如图,连接OM.
    ∴在Rt△OFM中,OF==.
    ∴BF=BO+OF=1+,AF=OA﹣OF=1﹣.
    ∴在Rt△AFE中,EF=AF•tanα=(1﹣)•tanα,
    AE==.
    在Rt△ABC中,BC=AB•sinα=2sinα.(∵r=1,∴AB=2.)
    AC=AB•cosα=2cosα.
    在Rt△BFN中,BN==,FN==.
    ∴y=FE•FN•
    =x2•
    =x2•
    =x2•
    =x2•
    =x.
    即y=x.
    ∵FM⊥AB,
    ∴FM最大值为F与O重合时,即为1.
    ∴0<x≤1.
    综上,y=x,0<x≤1.
    11.(2021•长沙)如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.
    (1)求sin∠AOQ的值;
    (2)求的值;
    (3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.

    【答案】(1).
    (2).
    (3)y=﹣(R<x<R).
    【解答】解:(1)如图,连接OP.
    ∵四边形MNPQ是正方形,
    ∴∠OMQ=∠ONP=90°,MQ=PN,
    ∵OQ=OP,
    ∴Rt△OMQ≌Rt△ONP(HL),
    ∴OM=ON,
    设OM=ON=m,则MQ=2m,OQ==m,
    ∴sin∠AOQ===.

    (2)由(1)可知OM=ON=m,OQ=OA=m,MN=2m,
    ∴AM=OA﹣OM=m﹣m,
    ∴==.

    (3)∵AB=2R,
    ∴OA=OB=OQ=R,
    ∵QM=2MO,
    ∴OM=,MQ=,
    ∵AB是直径,
    ∴∠ACB=∠DCE=90°,
    ∵∠CED=∠AEM,
    ∴∠A=∠D,
    ∵∠AME=∠DMB=90°,
    ∴△AME∽△DMB,
    ∴=,
    ∴=,
    ∴y=﹣,
    当点C与P重合时,=,
    ∴=,
    ∴x=R,
    ∴R<x<R.

    八.解直角三角形的应用-仰角俯角问题(共1小题)
    12.(2023•长沙)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8km,仰角为30°;10s后飞船到达B处,此时测得仰角为45°.
    (1)求点A离地面的高度AO;
    (2)求飞船从A处到B处的平均速度.(结果精确到0.1km/s,参考数据:≈1.73)

    【答案】(1)4km;
    (2)0.3km/s.
    【解答】解:(1)在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8km,
    ∴AO=AC=(km),
    (2)在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8km,
    ∴OC=AC=4(km),
    在Rt△BOC中,∵∠BOC=90°,∠BCO=45°,
    ∴∠BCO=∠OBC=45°,
    ∴OB=OC=4km,
    ∴AB=OB﹣OA=(4)km,
    ∴飞船从A处到B处的平均速度=≈0.3(km/s).
    九.频数(率)分布直方图(共1小题)
    13.(2023•长沙)为增强学生安全意识,某校举行了一次全校3000名学生参加的安全知识竞赛.从中随机抽取n名学生的竞赛成绩进行了分析,把成绩(满分100分,所有竞赛成绩均不低于60分)分成四个等级(D:60≤x<70;C:70≤x<80;B:80≤x<90;A:90≤x≤100),并根据分析结果绘制了不完整的频数分布直方图和扇形统计图.

    请根据以上信息,解答下列问题:
    (1)填空:n= 150 ,m= 36 ;
    (2)请补全频数分布直方图;
    (3)扇形统计图中B等级所在扇形的圆心角度数为  144 度;
    (4)若把A等级定为“优秀”等级,请你估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数.
    【答案】(1)150,36;
    (2)见解析;
    (3)144;
    (4)480人.
    【解答】解:(1)n=60÷40%=150,
    ∵m%=×100%=36%,
    ∴m=36;
    故答案为:150,36;
    (2)D等级学生有:150﹣54﹣60﹣24=12(人),
    补全的频数分布直方图,如图所示:

    (3)扇形统计图中B等级所在扇形的圆心角度数为360°×40%=144°;
    故答案为:144;
    (4)3000×16%=480(人),
    答:估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数有480人.
    一十.列表法与树状图法(共1小题)
    14.(2022•长沙)2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题为“推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.
    成绩x/分
    频数
    频率
    60≤x<70
    15
    0.1
    70≤x<80
    a
    0.2
    80≤x<90
    45
    b
    90≤x<100
    60
    c
    (1)表中a= 30 ,b= 0.3 ,c= 0.4 ;
    (2)请补全频数分布直方图;
    (3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.

    【答案】(1)30,0.3,0.4;
    (2)图形见解析;
    (3).
    【解答】解:(1)由题意得:a=150﹣15﹣45﹣60=30,b=45÷150=0.3,c=60÷150=0.4,
    故答案为:30,0.3,0.4;
    (2)补全频数分布直方图如下:

    (3)画树状图如下:

    共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,
    ∴选出的2名学生恰好为一名男生、一名女生的概率为=.

    相关试卷

    湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了﹣1+|﹣2|,÷,其中a=﹣1,解不等式组,两点,交y轴于点C等内容,欢迎下载使用。

    湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案): 这是一份湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案),共15页。试卷主要包含了+3a2,其中a=﹣,,其中x=﹣,2+20350,0+×,解不等式组等内容,欢迎下载使用。

    湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共35页。试卷主要包含了,B两点,两点,与y轴交于点C,顶点为D等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map