湖南省邵阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
展开湖南省邵阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.二元一次方程组的应用(共1小题)
1.(2021•邵阳)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了作为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.
请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.
二.一元一次不等式的应用(共1小题)
2.(2023•邵阳)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.
(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?
(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?
三.二次函数综合题(共3小题)
3.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.
(1)求该抛物线的表达式.
(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.
(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.
4.(2021•邵阳)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).
(1)求抛物线C的对称轴.
(2)当a=﹣1时,将抛物线C向左平移2个单位,再向下平移1个单位,得到抛物线C1.
①求抛物线C1的解析式.
②设抛物线C1与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,连接BC.点D为第一象限内抛物线C1上一动点,过点D作DE⊥OA于点E.设点D的横坐标为m.是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
5.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.
(1)求抛物线的解析式.
(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.
(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.
四.圆锥的计算(共1小题)
6.(2021•邵阳)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.
(1)求这种加工材料的顶角∠BAC的大小.
(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)
五.几何变换综合题(共1小题)
7.(2021•邵阳)如图,在Rt△ABC中,点P为斜边BC上一动点,将△ABP沿直线AP折叠,使得点B的对应点为B′,连接AB′,CB′,BB′,PB′.
(1)如图①,若PB′⊥AC,证明:PB′=AB′.
(2)如图②,若AB=AC,BP=3PC,求cos∠B′AC的值.
(3)如图③,若∠ACB=30°,是否存在点P,使得AB=CB′.若存在,求此时的值;若不存在,请说明理由.
六.频数(率)分布直方图(共1小题)
8.(2023•邵阳)某市对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级.现从中随机抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出了如下频数分布图和如图所示的条形统计图(不完整).请根据图表中的信息回答下列问题.
等级
频数
频率
A
a
0.2
B
1600
b
C
1400
0.35
D
200
0.05
(1)求频数分布表中a,b的值.
(2)补全条形统计图.
(3)该市九年级学生约80000人,试估计该市有多少名九年级学生可以评为“A”级.
七.条形统计图(共1小题)
9.(2022•邵阳)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.
(1)求抽取参加调查的学生人数.
(2)将以上两幅不完整的统计图补充完整.
(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.
湖南省邵阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.二元一次方程组的应用(共1小题)
1.(2021•邵阳)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了作为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.
请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.
【答案】见试题解答内容
【解答】解:设钢笔购买了x支,笔记本购买了y本.
由题意得:,
解得:,
∴15×15=225(元),35×5=175(元),
答:钢笔购买了15支共225元,笔记本购买了35本共175元.
二.一元一次不等式的应用(共1小题)
2.(2023•邵阳)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.
(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?
(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?
【答案】(1)该公司销售一台甲型自行车的利润是150元,一台乙型自行车的利润是100元;
(2)最少需要购买甲型自行车10台.
【解答】解:(1)设该公司销售一台甲型自行车的利润是x元,一台乙型自行车的利润是y元,
由题意得:,
解得:,
答:该公司销售一台甲型自行车的利润是150元,一台乙型自行车的利润是100元;
(2)需要购买甲型自行车m台,则需要购买乙型自行车(20﹣m)台,
由题意得:500m+800(20﹣m)≤13000,
解得:m≥10,
答:最少需要购买甲型自行车10台.
三.二次函数综合题(共3小题)
3.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.
(1)求该抛物线的表达式.
(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.
(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.
【答案】(1)y=﹣x2+x+2;(2)(1,0)或(2,0);(3)1.
【解答】解:在直线y=2x+2中,
当x=0时,y=2,
当y=0时,x=﹣1,
∴点A的坐标为(﹣1,0),点B的坐标为(0,2),
把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,
,
解得,
∴抛物线的解析式为y=﹣x2+x+2;
(2)①当△AOB≌△DPC时,AO=DP,
又∵四边形OPDE为正方形,
∴DP=OP=AO=1,
此时点P的坐标为(1,0),
②当△AOB≌△CPD时,OB=DP,
又∵四边形OPDE为正方形,
∴DP=OP=OB=2,
此时点P的坐标为(2,0),
综上,点P的坐标为(1,0)或(2,0);
(3)如图,
点D′在以点P为圆心,DP为半径的圆上运动,
∴当点D′′,点P,点C三点共线时,CD′′有最小值,
由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),
∴CD′′的最小值为1.
4.(2021•邵阳)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).
(1)求抛物线C的对称轴.
(2)当a=﹣1时,将抛物线C向左平移2个单位,再向下平移1个单位,得到抛物线C1.
①求抛物线C1的解析式.
②设抛物线C1与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,连接BC.点D为第一象限内抛物线C1上一动点,过点D作DE⊥OA于点E.设点D的横坐标为m.是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
【答案】见试题解答内容
【解答】解:(1)∵点(1,1)和(4,1)的纵坐标相同,
故上述两点关于抛物线对称轴对称,
故抛物线的对称轴为直线x=(1+4)=;
(2)①由题意得:,解得,
故原抛物线的表达式为y=﹣x2+5x﹣3;
由平移的性质得,平移后的抛物线表达式为y=﹣(x+2)2+5(x+2)﹣3﹣1=﹣x2+x+2;
②存在,理由:
令y=﹣x2+x+2=0,解得x=﹣1或2,令x=0,则y=2,
故点B、A的坐标分别为(﹣1,0)、(2,0),点C(0,2);
∵tan∠BCO=,
同理可得:tan∠CBO=2,
当以点O,D,E为顶点的三角形与△BOC相似时,
则tan∠DOE=2或,
设点D的坐标为(m,﹣m2+m+2),
则tan∠DOE===2或,
解得:m=﹣2(舍去)或1或(舍去)或,
故m=1或.
5.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.
(1)求抛物线的解析式.
(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.
(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.
【答案】(1)抛物线解析式为y=﹣x2+x+4;
(2)△NED面积的最大值是7;
(3)R的坐标为(,)或(,)或(,)或(,)或(,).
【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+x+c 得:
,
解得:,
∴抛物线解析式为y=﹣x2+x+4;
(2)联立,
解得或,
∴D(2+,﹣3﹣),E(2﹣,﹣3+),
∵点M为直线l上的一动点,横坐标为t,
∴M(t,﹣t﹣1),
∴N(t,﹣t2+t+4),
∴MN=﹣t2+t+4﹣(﹣t﹣1)=﹣t2+2t+5,
∴S△NED=MN•|xD﹣xE|=×(﹣t2+2t+5)×2=﹣(t﹣2)2+7,
∵﹣<0,0<t<4,
∴当t=2时,S△NED取最大值7,
∴△NED面积的最大值是7;
(3)在y=﹣x2+x+4中,令x=0得y=4,
∴C(0,4),
设M(t,﹣t﹣1),R(m,n),
又B(4,0),
①当BC,MR为对角线时,BC,MR的中点重合,且BM=CM,
∴,
解得,
∴R(,);
②当BM,CR为对角线时,BM,CR的中点重合,且BC=CM,
∴,
解得或,
∴R(,)或(,);
③当BR,CM为对角线时,BR,CM的中点重合,且BC=BM,
∴,
解得或,
∴R(,)或(,);
综上所述,R的坐标为(,)或(,)或(,)或(,)或(,).
四.圆锥的计算(共1小题)
6.(2021•邵阳)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.
(1)求这种加工材料的顶角∠BAC的大小.
(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)
【答案】见试题解答内容
【解答】解:(1)设∠BAC=n°.
由题意得π•DE=,AD=2DE,
∴n=90,
∴∠BAC=90°.
(2)∵AD=2DE=10(cm),
∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.
五.几何变换综合题(共1小题)
7.(2021•邵阳)如图,在Rt△ABC中,点P为斜边BC上一动点,将△ABP沿直线AP折叠,使得点B的对应点为B′,连接AB′,CB′,BB′,PB′.
(1)如图①,若PB′⊥AC,证明:PB′=AB′.
(2)如图②,若AB=AC,BP=3PC,求cos∠B′AC的值.
(3)如图③,若∠ACB=30°,是否存在点P,使得AB=CB′.若存在,求此时的值;若不存在,请说明理由.
【答案】(1)见解析;
(2);
(3)或.
【解答】解:(1)证明:∵PB'⊥AC,∠CAB=90°,
∴PB'∥AB.
∴∠B'PA=∠BAP,
又由折叠可知∠BAP=∠B'AP,
∴∠B'PA=∠B'AP.
故PB′=AB′.
(2)设AB=AC=a,AC、PB'交于点D,如答图1所示,
则△ABC为等腰直角三角形,
∴BC=,PC=,PB=,
由折叠可知,∠PB'A=∠B=45°,
又∠ACB=45°,
∴∠PB'A=∠ACB,
又∠CDP=∠B'DA,
∴△CDP∽△B'DA.
∴==.①
设B'D=b,则CD=b.
∴AD=AC﹣CD=a﹣b,
PD=PB'﹣B'D=PB﹣B'D=﹣b,
由①=得:=.
解得:b=.
过点D作DE⊥AB'于点E,则△B'DE为等腰直角三角形.
∴B'E=sin45°×B'D===,
∴AE=AB'﹣B'E=AB﹣B'E=a﹣=.
又AD=AC﹣CD=a﹣b=a﹣=.
∴cos∠B'AC=cos∠EAD===.
(3)存在点P,使得CB'=AB=m.理由如下:
∵∠ACB=30°,∠CAB=90°.
∴BC=2m.
①如答图2所示,
由题意可知,点B'的运动轨迹为以A为圆心、AB为半径的半圆A.
当P为BC中点时,PC=BP=AP=AB'=m,
又∠B=60°,
∴△PAB为等边三角形.
又由折叠可得四边形ABPB'为菱形.
∴PB'∥AB,
∴PB'⊥AC.
又∵AP=AB',
则易知AC为PB'的垂直平分线.
故CB'=PC=AB=m,满足题意.
此时,==.
②当点B'落在BC上时,如答图3所示,
此时CB'=AB=m,
则PB'==,
∴PC=CB'+PB'=m+=,
∴==.
综上所述,的值为或.
六.频数(率)分布直方图(共1小题)
8.(2023•邵阳)某市对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级.现从中随机抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出了如下频数分布图和如图所示的条形统计图(不完整).请根据图表中的信息回答下列问题.
等级
频数
频率
A
a
0.2
B
1600
b
C
1400
0.35
D
200
0.05
(1)求频数分布表中a,b的值.
(2)补全条形统计图.
(3)该市九年级学生约80000人,试估计该市有多少名九年级学生可以评为“A”级.
【答案】(1)a=800,b=0.4;
(2)见解析;
(3)16000名,
【解答】解:(1)∵被调查的人数为200÷0.05=4000(人),
∴a=4000×0.2=800,b==0.4;
(2)如图:
;
(3)80000×0.2=16000(名),
答:估计该市有16000名九年级学生可以评为“A”级.
七.条形统计图(共1小题)
9.(2022•邵阳)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.
(1)求抽取参加调查的学生人数.
(2)将以上两幅不完整的统计图补充完整.
(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.
【答案】(1)40人;
(2)见解答;
(3)200人.
【解答】解:(1)5÷12.5%=40 (人),
答:此次共调查了40人;
(2)体育类有40×25%=10(人),
文艺类社团的人数所占百分比:15÷40×100%=37.5%,
阅读类社团的人数所占百分比:10÷40×100%=25%,
将统计图补充完整如下:
(3)1600×12.5%=200(人),
答:估计喜欢兴趣类社团的学生有200人.
湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了﹣1+|﹣2|,÷,其中a=﹣1,解不等式组,两点,交y轴于点C等内容,欢迎下载使用。
湖南省益阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖南省益阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了先化简,再求值,的函数表达式为,在第一象限内的函数图象上,的顶点P在抛物线F等内容,欢迎下载使用。
湖南省娄底市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖南省娄底市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共29页。试卷主要包含了,交y轴于点C,,与y轴交于点C等内容,欢迎下载使用。