湖南省郴州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
展开湖南省郴州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.分式的化简求值(共1小题)
1.(2021•郴州)先化简,再求值:(﹣)÷,其中a=.
二.分式方程的应用(共1小题)
2.(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.
(1)求A,B奖品的单价;
(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?
三.二次函数的应用(共1小题)
3.(2021•郴州)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:
x
…
4.0
5.0
5.5
6.5
7.5
…
y
…
8.0
6.0
5.0
3.0
1.0
…
(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x的函数图象;
(2)根据画出的函数图象,求出y关于x的函数表达式;
(3)设经营此商品的月销售利润为P(单位:万元),
①写出P关于x的函数表达式;
②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?
四.二次函数综合题(共3小题)
4.(2023•郴州)已知抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求的值;
(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=?若存在,求出点Q的坐标;若不存在,请说明理由.
5.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.
①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;
②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.
6.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.
(1)求抛物线H的表达式;
(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;
(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
五.三角形综合题(共2小题)
7.(2022•郴州)如图1,在△ABC中,AC=BC,∠ACB=90°,AB=4cm.点D从A点出发,沿线段AB向终点B运动.过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).
(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:
变量a(cm)
0
0.5
1
1.5
2
2.5
3
3.5
4
变量h(cm)
0
0.5
1
1.5
2
1.5
1
0.5
0
在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2﹣1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2﹣2.
根据探究的结果,解答下列问题:
①当a=1.5时,h= ;当h=1时,a= .
②将图2﹣1,图2﹣2中描出的点顺次连接起来.
③下列说法正确的是 .(填“A”或“B”)
A.变量h是以a为自变量的函数
B.变量a是以h为自变量的函数
(2)如图3,记线段DE与△ABC的一直角边、斜边围成的三角形(即阴影部分)的面积(cm2)为s.
①分别求出当0≤a≤2和2<a≤4时,s关于a的函数表达式;
②当s=时,求a的值.
8.(2021•郴州)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.
(1)证明:△AHB≌△AGC;
(2)如图2,连接GF,HG,HG交AF于点Q.
①证明:在点H的运动过程中,总有∠HFG=90°;
②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?
六.四边形综合题(共1小题)
9.(2023•郴州)已知△ABC是等边三角形,点D是射线AB上的一个动点,延长BC至点E,使CE=AD,连接DE交射线AC于点F.
(1)如图1,当点D在线段AB上时,猜测线段CF与BD的数量关系并说明理由;
(2)如图2,当点D在线段AB的延长线上时,
①线段CF与BD的数量关系是否仍然成立?请说明理由;
②如图3,连接AE.设AB=4,若∠AEB=∠DEB,求四边形BDFC的面积.
七.切线的判定与性质(共1小题)
10.(2023•郴州)如图,在⊙O中,AB是直径,点C是圆上一点.在AB的延长线上取一点D,连接CD,使∠BCD=∠A.
(1)求证:直线CD是⊙O的切线;
(2)若∠ACD=120°,CD=2,求图中阴影部分的面积(结果用含π的式子表示).
八.作图—基本作图(共1小题)
11.(2023•郴州)如图,四边形ABCD是平行四边形.
(1)尺规作图;作对角线AC的垂直平分线MN(保留作图痕迹);
(2)若直线MN分别交AD,BC于E,F两点,求证:四边形AFCE是菱形.
九.相似形综合题(共1小题)
12.(2022•郴州)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.
(1)求证:△AEF∽△DCE;
(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.
①求AG+GM的最小值;
②当AG+GM取最小值时,求线段DE的长.
一十.解直角三角形的应用-坡度坡角问题(共1小题)
13.(2022•郴州)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B之间的距离.
(参考数据:≈1.41,≈1.73.结果精确到0.1m)
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
14.(2021•郴州)如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.
(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)
一十二.条形统计图(共1小题)
15.(2021•郴州)我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)此次调查一共随机采访了 名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为 度;
(2)补全条形统计图(要求在条形图上方注明人数);
(3)若该校有3600名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;
(4)李老师计划从A,B,C,D四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中A,B两人的概率.
一十三.列表法与树状图法(共1小题)
16.(2022•郴州)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)①此次调查一共随机抽取了 名学生;
②补全条形统计图(要求在条形图上方注明人数);
③扇形统计图中圆心角α= 度;
(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;
(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.
湖南省郴州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.分式的化简求值(共1小题)
1.(2021•郴州)先化简,再求值:(﹣)÷,其中a=.
【答案】,.
【解答】解:(﹣)÷
=[﹣]•(a﹣1)
=•(a﹣1)
=•(a﹣1)
=•(a﹣1)
=,
当a=时,原式==.
二.分式方程的应用(共1小题)
2.(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.
(1)求A,B奖品的单价;
(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?
【答案】(1)A奖品的单价为40元,则B奖品的单价为15元;
(2)有三种方案:①购买A种奖品23件,B种奖品77件;②购买A种奖品24件,B种奖品76件;③购买A种奖品25件,B种奖品75件.
【解答】解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,
由题意得:=,
解得:x=40,
经检验,x=40是原方程的解,
则x﹣25=15,
答:A奖品的单价为40元,则B奖品的单价为15元;
(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,
由题意得:,
解得:22.5≤m≤25,
∵m为正整数,
∴m的值为23,24,25,
∴有三种方案:
①购买A种奖品23件,B种奖品77件;
②购买A种奖品24件,B种奖品76件;
③购买A种奖品25件,B种奖品75件.
三.二次函数的应用(共1小题)
3.(2021•郴州)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:
x
…
4.0
5.0
5.5
6.5
7.5
…
y
…
8.0
6.0
5.0
3.0
1.0
…
(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x的函数图象;
(2)根据画出的函数图象,求出y关于x的函数表达式;
(3)设经营此商品的月销售利润为P(单位:万元),
①写出P关于x的函数表达式;
②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?
【答案】(1)见解答;(2)y=﹣2x+16(x≤8);(3)此时销售单价为3元.
【解答】解:(1)
(2)根据图象设y=kx+b,把(4.0,8.0)和(5.0,6.0)代入上式,
得,
解得,
∴y=﹣2x+16,
∵y≥0,
∴﹣2x+16≥0,
解得x≤8,
∴y关于x的函数表达式为y=﹣2x+16(x≤8);
(3)①P=(x﹣2)y
=(x﹣2)(﹣2x+16)
=﹣2x2+20x﹣32,
即P与x的函数表达式为:P=﹣2x2+20x﹣32(x≤8);
②∵物价局限定商品的销售单价不得超过进价的200%,
∴x≤2×200%,
即x≤4,
由题意得P=10,
∴﹣2x2+20x﹣32=10,
解得x1=3,x2=7,
∵x≤4,
∴此时销售单价为3元.
四.二次函数综合题(共3小题)
4.(2023•郴州)已知抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求的值;
(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=x2﹣5x+4;
(2);
(3) 或(,2)或Q(3,﹣2)或.
【解答】解:(1)∵抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),
,
解得:,
∴抛物线的表达式为y=x2﹣5x+4;
(2)由(1)知y=x2﹣5x+4,当x=0时,y=4,
∴C(0,4),抛物线的对称轴为直线,
∵△PAC的周长等于PA+PC+AC,AC为定长,
∴当PA+PC的值最小时,△PAC的周长最小,
∵A,B关于抛物线的对称轴对称,
∴PA+PC=PB+PC≥BC,当P,B,C三点共线时,PA+PC的值最小,为BC的长,此时点P为直线BC与对称轴的交点,
设直线BC的解析式为:y=mx+n,
则:,
解得:,
∴直线BC的解析式为y=﹣x+4,
当 时,,
∴,
∵A(1,0),C(0,4),
∴PA==,PC==,
∴;
(2)存在,
∵D为OC的中点,
∴D(0,2),
∴OD=2,
∵B(4,0),
∴OB=4,
在Rt△BOD中,,
,
∴∠QDB=∠OBD;
①当Q点在D点上方时:过点D作DQ∥OB,交抛物线于点Q,则:∠QDB=∠OBD,此时Q点纵坐标为2,
设Q点横坐标为t,则:t2﹣5t+4=2,解得:,
∴Q(,2)或(,2);
②当点Q在D点下方时:设DQ与x轴交于点E,
则:DE=BE,
设E(p,0),则:DE2=OE2+OD2=p2+4,BE2=(4﹣p)2,
∴p2+4=(4﹣p)2,
解得:,
∴,
设DE的解析式为:y=kx+q,
则:,
解得:,
∴,
联立,
解得:或,
∴Q(3,﹣2)或;
综上所述, 或(,2)或Q(3,﹣2)或.
5.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.
①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;
②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.
【答案】见试题解答内容
【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=x2+bx+c得,
,
解得,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)①由(1)可知,C(0,﹣3),
设直线BC的解析式为y=kx+m,
将C(0,﹣3),B(3,0)代入得,
,
∴,
∴直线BC的解析式为y=x﹣3,
∴直线MN的解析式为y=x,
∵抛物线的对称轴为x=﹣=﹣=1,
把x=1代入y=x,得y=1,
∴D(1,1),
方法一:
设直线CD的解析式为y=k1x+b1,
将C(0,﹣3),D(1,1)代 入得,
,
解得,
∴直线CD的解析式为y=4x﹣3,
当y=0时,4x﹣3=0,
∴x=,
∴E(,0),
∴OE=.
方法二:
由勾股定理得OD==,BC==3,
∵BC∥MN,
∴△DEO∽△CEB,
∴,
设OE=x,则BE=3﹣x,
∴,
解得x=,
∴OE=.
②存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.
理由如下:
(Ⅰ)若平行四边形以BC为边时,
由BC∥FD可知,FD在直线MN上,
∴点F是直线MN与对称轴l的交点,即F(1,1),
由点D在直线MN上,设D(t,t),
如图,若四边形BCFD是平行四边形,则DF=BC,
过点D作y轴的垂线交对称轴l于点G,则G(1,t),
∵BC∥MN,
∴∠OBC=∠DOB,
∵GD∥x轴,
∴∠GDF=∠DOB,
∴∠OBC=∠GDF,
又∵∠BOC=∠DGF=90°,
∴△DGF≌△BOC(AAS),
∴GD=OB,GF=OC,
∵GD=t﹣1,OB=3,
∴t﹣1=3,
∴t=4,
∴D(4,4),
如图,若四边形BCDF是平行四边形,则DF=CB,
同理可证△DKF≌△COB(AAS),
∴KD=OC,
∵KD=1﹣t,OC=3,
∴1﹣t=3,
∴t=﹣2,
∴D(﹣2,﹣2);
(Ⅱ)若平行四边形以BC为对角线时,
由于D在BC的上方,则点F一定在BC的下方,
如图,四边形BFCD为平行四边形,
设D(t,t),F(1,n),
同理可证△DHC≌△BPF(AAS),
∴DH=BP,HC=PF,
∵DH=t,BP=3﹣1=2,HC=t﹣(﹣3)=t+3,PF=0﹣n=﹣n,
∴,
∴,
∴D(2,2),F(1,﹣5),
综上所述,存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.
当点F的坐标为(1,1)时,点D的坐标为(4,4)或(﹣2,﹣2);
当点F的坐标为(1,﹣5)时,点D的坐标为(2,2).
6.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.
(1)求抛物线H的表达式;
(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;
(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
【答案】(1)y=﹣(x+1)2+4;
(2);
(3)点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).
【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1,4),
∴抛物线H:y=a(x+1)2+4,
将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,
解得:a=﹣1,
∴抛物线H的表达式为y=﹣(x+1)2+4;
(2)如图1,由(1)知:y=﹣x2﹣2x+3,
令x=0,得y=3,
∴C(0,3),
设直线AC的解析式为y=mx+n,
∵A(﹣3,0),C(0,3),
∴,
解得:,
∴直线AC的解析式为y=x+3,
设P(m,﹣m2﹣2m+3),则E(m,m+3),
∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,
∵﹣1<0,
∴当m=﹣时,PE有最大值,
∵OA=OC=3,∠AOC=90°,
∴△AOC是等腰直角三角形,
∴∠ACO=45°,
∵PD⊥AB,
∴∠ADP=90°,
∴∠ADP=∠AOC,
∴PD∥OC,
∴∠PEF=∠ACO=45°,
∵PF⊥AC,
∴△PEF是等腰直角三角形,
∴PF=EF=PE,
∴S△PEF=PF•EF=PE2,
∴当m=﹣时,S△PEF最大值=×()2=;
(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,
如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,
则∠AHG=∠ACO=∠PQG,
在△PQG和△ACO中,
,
∴△PQG≌△ACO(AAS),
∴PG=AO=3,
∴点P到对称轴的距离为3,
又∵y=﹣(x+1)2+4,
∴抛物线对称轴为直线x=﹣1,
设点P(x,y),则|x+1|=3,
解得:x=2或x=﹣4,
当x=2时,y=﹣5,
当x=﹣4时,y=﹣5,
∴点P坐标为(2,﹣5)或(﹣4,﹣5);
②当AC为平行四边形的对角线时,
如图3,设AC的中点为M,
∵A(﹣3,0),C(0,3),
∴M(﹣,),
∵点Q在对称轴上,
∴点Q的横坐标为﹣1,设点P的横坐标为x,
根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,
∴x=﹣2,此时y=3,
∴P(﹣2,3);
综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).
五.三角形综合题(共2小题)
7.(2022•郴州)如图1,在△ABC中,AC=BC,∠ACB=90°,AB=4cm.点D从A点出发,沿线段AB向终点B运动.过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).
(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:
变量a(cm)
0
0.5
1
1.5
2
2.5
3
3.5
4
变量h(cm)
0
0.5
1
1.5
2
1.5
1
0.5
0
在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2﹣1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2﹣2.
根据探究的结果,解答下列问题:
①当a=1.5时,h= 1.5 ;当h=1时,a= 1或3 .
②将图2﹣1,图2﹣2中描出的点顺次连接起来.
③下列说法正确的是 A .(填“A”或“B”)
A.变量h是以a为自变量的函数
B.变量a是以h为自变量的函数
(2)如图3,记线段DE与△ABC的一直角边、斜边围成的三角形(即阴影部分)的面积(cm2)为s.
①分别求出当0≤a≤2和2<a≤4时,s关于a的函数表达式;
②当s=时,求a的值.
【答案】(1)①1.5;1或3;
②解答详见解答;
③A;
(2)①S=;
②1或3.
【解答】解:(1)①从图1中,当a<2时,△ADE是等腰直角三角形,
∴DE=AD=1.5,
从图2,当h=1时,横坐标a对应1或3,
故答案为:1.5;1或3;
②如图,
③当自变量a变化时,h随之变化,当a确定时,h有唯一一个值与之对应,所以h是a的函数;
当自变量h确定时,a有两个值与之对应,所以a不是h的函数,
故答案为A;
(2)①当0≤a≤2时,DE=AD=a,
S△ADE=AD•DE=;
当2<a≤4时,DE=AB﹣AD=4﹣a,
∴S==,
∴S=;
②当S=时,当0≤a≤2时,
=,
∴a1=1,a2=﹣1(舍去),
当2<≤4时,
=,
∴a3=3,a4=5(舍去),
综上所述:当S=时,a=1或3.
8.(2021•郴州)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.
(1)证明:△AHB≌△AGC;
(2)如图2,连接GF,HG,HG交AF于点Q.
①证明:在点H的运动过程中,总有∠HFG=90°;
②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?
【答案】(1)证明见解答;
(2)①证明见解答;
②当EH的长度为或2时,△AQG为等腰三角形.
【解答】(1)证明:如图1,
由旋转得:AH=AG,∠HAG=90°,
∵∠BAC=90°,
∴∠BAH=∠CAG,
∵AB=AC,
∴△ABH≌△ACG(SAS);
(2)①证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵点E,F分别为AB,AC的中点,
∴EF是△ABC的中位线,
∴EF∥BC,AE=AB,AF=AC,
∴AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,
∵∠EAH=∠FAG,AH=AG,
∴△AEH≌△AFG(SAS),
∴∠AFG=∠AEH=45°,
∴∠HFG=45°+45°=90°;
②分两种情况:
i)如图3,AQ=QG时,
∵AQ=QG,
∴∠QAG=∠AGQ,
∵∠HAG=∠HAQ+∠QAG=∠AHG+∠AGH=90°,
∴∠QAH=∠AHQ,
∴AQ=QH=QG,
∵AH=AG,
∴AQ⊥GH,
∵∠AFG=∠AFH=45°,
∴∠FGQ=∠FHQ=45°,
∴∠HFG=∠AGF=∠AHF=90°,
∴四边形AHFG是正方形,
∵AC=4,
∴AF=2,
∴FG=EH=,
∴当EH的长度为时,△AQG为等腰三角形;
ii)如图4,当AG=QG时,∠GAQ=∠AQG,
∵∠AEH=∠AGQ=45°,∠EAH=∠GAQ,
∴∠AHE=∠AQG=∠EAH,
∴EH=AE=2,
∴当EH的长度为2时,△AQG为等腰三角形;
综上,当EH的长度为或2时,△AQG为等腰三角形.
六.四边形综合题(共1小题)
9.(2023•郴州)已知△ABC是等边三角形,点D是射线AB上的一个动点,延长BC至点E,使CE=AD,连接DE交射线AC于点F.
(1)如图1,当点D在线段AB上时,猜测线段CF与BD的数量关系并说明理由;
(2)如图2,当点D在线段AB的延长线上时,
①线段CF与BD的数量关系是否仍然成立?请说明理由;
②如图3,连接AE.设AB=4,若∠AEB=∠DEB,求四边形BDFC的面积.
【答案】(1),理由见解析过程;
(2)①成立,理由见解析过程;
②.
【解答】解:(1),理由如下:
如图,过点D作DG∥BC,交AC于点G,
∵△ABC是等边三角形,
∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,
∵DG∥BC,
∴∠ADG=∠ABC=60°,∠AGD=∠ACB=60°,∠GDF=∠CEF,
∴△ADG为等边三角形,
∴AD=AG=DG,
∵AD=CE,AB﹣AD=AC﹣AG,
∴DG=CE,BD=CG,
又∠DFG=∠CFE,
∴△DGF≌△ECF(AAS),
∴CF=GF=CG=BD;
(2)①成立,理由如下:
如图2,过点D作DG∥BC,交AC的延长线于点G,
∵△ABC是等边三角形,
∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,
∵DG∥BC,
∴∠ADG=∠ABC=60°,∠AGD=∠ACB=60°,∠GDF=∠CEF,
∴△ADG是等边三角形,
∴AD=AG=DG,
∵AD=CE,AD﹣AB=AG﹣AC,
∴DG=CE,BD=CG,
又∠DFG=∠CFE,
∴△DGF≌△ECF(AAS),
∴CF=FG=CG=BD;
②如图,过点D作DG∥BC,交AC的延长线于点G,过点A作 AN⊥DG,交BC于点H,交DE于点N,则:AN⊥BC,
由①知:△ADG为等边三角形,△DGF≌△ECF(AAS),
∴,
∵△ABC为等边三角形,,,
∵∠AEB=∠DEB,EH=EH,∠AHE=∠MEE=90°,
∴△AEH≌△MEH(ASA),
∴,,
∵△DGF≌ECF,
∴∠CEF=∠MDN,DG=CE,
∴∠AEH=∠MDN,
∴tan∠AEH=tan∠MDN,
∴,
设MN=y,DG=CE=x,则:EH=CE+CH=2+x,,
∴①,
∵DG∥BC,
∴△ABC∽△ADG,
∴,
即:,
联立①②可得: (负值已舍去),
经检验 是原方程的根,
∴,,,
∴,
∴S△ACE=CE•AH=×(4+4)×2=4+4,
∴==,
∴S△CEF=(4)=4+2,
∴四边形BDFC的面积为=S△ADG﹣S△ABC﹣S△DFG=S△ADG﹣S△ABC﹣S△CEF==.
七.切线的判定与性质(共1小题)
10.(2023•郴州)如图,在⊙O中,AB是直径,点C是圆上一点.在AB的延长线上取一点D,连接CD,使∠BCD=∠A.
(1)求证:直线CD是⊙O的切线;
(2)若∠ACD=120°,CD=2,求图中阴影部分的面积(结果用含π的式子表示).
【答案】(1)见解答.
(2)2﹣.
【解答】(1)证明:连接OC,
∵AB是直径,
∴∠ACB=∠OCA+∠OCB=90°,
∵OA=OC,∠BCD=∠A,
∴∠OCA=∠A=∠BCD,
∴∠BCD+∠OCB=∠OCD=90°,
∴OC⊥CD,
∵OC是⊙O的半径,
∴直线CD是⊙O的切线.
(2)解:∵∠ACD=120°,∠ACB=90°,
∴∠A=∠BCD=∠120°﹣90°=30°,
∴∠AOC=2∠A=60°,
在Rt△OCD中,tan∠AOC==tan60°,CD=2,
∴,解得OC=2,
∴阴影部分的面积=S△ACD﹣S扇形BOC=﹣=2﹣.
八.作图—基本作图(共1小题)
11.(2023•郴州)如图,四边形ABCD是平行四边形.
(1)尺规作图;作对角线AC的垂直平分线MN(保留作图痕迹);
(2)若直线MN分别交AD,BC于E,F两点,求证:四边形AFCE是菱形.
【答案】(1)作图见解析部分;
(2)证明见解析部分.
【解答】(1)解:如图,直线MN即为所求;
(2)证明:设AC与EF交于点O.由作图可知,EF垂直平分线段AC,
∴OA=OC,
∵四边形ABCD是平行四边形,
∴AE∥CF,
∴∠OAE=∠OCF,
∵∠AOE=∠COF,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四边形AFCE是平行四边形,
∵AC⊥EF,
∴四边形AFCE是菱形.
九.相似形综合题(共1小题)
12.(2022•郴州)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.
(1)求证:△AEF∽△DCE;
(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.
①求AG+GM的最小值;
②当AG+GM取最小值时,求线段DE的长.
【答案】见试题解答内容
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∴∠CED+∠DCE=90°,
∵EF⊥CE,
∴∠CED+∠AEF=90°,
∴∠DCE=∠AEF,
∴△AEF∽△DCE;
(2)解:①连接AM,如图2,
∵BG⊥CF,
∴△BGC是直角三角形,
∵点M是BC的中点,
∴MB=CM=GM=,
∴点G在以点M为圆心,3为半径的圆上,
当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,
当A,G,M三点共线时,AG+GM=AM,
此时,AG+GM取得最小值,
在Rt△ABM中,AM===5,
∴AG+GM的最小值为5.
②方法一:
如图3,过点M作MN∥AB交FC于点N,
∴△CMN∽△CBF,
∴,
设AF=x,则BF=4﹣x,
∴MN=BF=(4﹣x),
∵MN∥AB,
∴△AFG∽△MNG,
∴,
由(2)可知AG+GM的最小值为5,
即AM=5,
又∵GM=3,
∴AG=2,
∴,
解得x=1,
即AF=1,
由(1)得,
设DE=y,则AE=6﹣y,
∴,
解得:y=3+或y=3﹣,
∵0<6,0<3﹣<6,
∴DE=3+或DE=3﹣.
方法二:
如图4,过点G作GH∥AB交BC于点H,
∴△MHG∽△MBA,
∴,
由(2)可知AG+MG的最小值为5,
即AM=5,
又∵GM=3,
∴,
∴GH=,MH=,
由GH∥AB得△CHG∽△CBF,
∴,
即,
解得FB=3,
∴AF=AB﹣FB=1.
由(1)得,
设DE=y,则AE=6﹣y,
∴,
解得:y=3+或y=3﹣,
∵0<6,0<3﹣<6,
∴DE=3+或DE=3﹣.
一十.解直角三角形的应用-坡度坡角问题(共1小题)
13.(2022•郴州)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B之间的距离.
(参考数据:≈1.41,≈1.73.结果精确到0.1m)
【答案】背水坡新起点A与原起点B之间的距离约为14.6米.
【解答】解:在Rt△BCD中,
∵BC的坡度为i1=1:1,
∴=1,
∴CD=BD=20米,
在Rt△ACD中,
∵AC的坡度为i2=1:,
∴=,
∴AD=CD=20(米),
∴AB=AD﹣BD=20﹣20≈14.6(米),
∴背水坡新起点A与原起点B之间的距离约为14.6米.
一十一.解直角三角形的应用-仰角俯角问题(共1小题)
14.(2021•郴州)如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.
(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)
【答案】约为141.1米.
【解答】解:过B作BM⊥水平地面于M,BN⊥AC于N,如图所示:
则四边形AMBN是矩形,
∴AN=BM,BN=MA,
∵斜坡AB=105米,坡度i=1:2=,
∴设BM=x米,则AM=2x米,
∴AB===x=105,
∴x=21,
∴AN=BM=21(米),BN=AM=42(米),
在Rt△BCN中,∠CBN=α=45°,
∴△BCN是等腰直角三角形,
∴CN=BN=42(米),
∴AC=AN+CN=21+42=63≈141.1(米),
答:观光电梯AC的高度约为141.1米.
一十二.条形统计图(共1小题)
15.(2021•郴州)我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)此次调查一共随机采访了 200 名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为 198 度;
(2)补全条形统计图(要求在条形图上方注明人数);
(3)若该校有3600名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;
(4)李老师计划从A,B,C,D四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中A,B两人的概率.
【答案】(1)200、198;(2)见解答;(3)288;(4).
【解答】解:(1)此次调查一共随机采访学生44÷22%=200(名),
在扇形统计图中,“灰”所在扇形的圆心角的度数为360°×=198°,
故答案为:200,198;
(2)绿色部分的人数为200﹣(16+44+110)=30(人),
补全图形如下:
(3)估计该校学生将用过的餐巾纸投放到红色收集桶的人数3600×=288(人);
(4)列表如下:
A
B
C
D
A
(B,A)
(C,A)
(D,A)
B
(A,B)
(C,B)
(D,B)
C
(A,C)
(B,C)
(D,C)
D
(A,D)
(B,D)
(C,D)
由表格知,共有12种等可能结果,其中恰好抽中A,B两人的有2种结果,
所以恰好抽中A,B两人的概率为=.
一十三.列表法与树状图法(共1小题)
16.(2022•郴州)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)①此次调查一共随机抽取了 200 名学生;
②补全条形统计图(要求在条形图上方注明人数);
③扇形统计图中圆心角α= 54 度;
(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;
(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.
【答案】见试题解答内容
【解答】解:(1)①此次调查一共随机抽取的学生人数为:50÷25%=200(名),
故答案为:200;
②C组的人数为:200﹣30﹣50﹣70﹣20=30(名),
补全条形统计图如下:
③扇形统计图中圆心角α=360°×=54°,
故答案为:54;
(2)3200×=1120(名),
答:估计该校参加D组(阅读)的学生人数为1120名;
(3)画树状图如下:
共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,
∴恰好抽中甲、乙两人的概率为=.
湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了﹣1+|﹣2|,÷,其中a=﹣1,解不等式组,两点,交y轴于点C等内容,欢迎下载使用。
湖南省郴州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案): 这是一份湖南省郴州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案),共15页。试卷主要包含了0+|﹣2|,﹣1•tan60°,﹣1,先化简,再求值,,其中a=+1,b=﹣1等内容,欢迎下载使用。
湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共35页。试卷主要包含了,B两点,两点,与y轴交于点C,顶点为D等内容,欢迎下载使用。