湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
展开湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.分式方程的应用(共1小题)
1.(2023•常德)“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.
(1)求A型玩具和B型玩具的进价分别是多少?
(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?
二.反比例函数综合题(共1小题)
2.(2022•常德)如图,已知正比例函数y1=x与反比例函数y2的图象交于A(2,2),B两点.
(1)求y2的解析式并直接写出y1<y2时x的取值范围;
(2)以AB为一条对角线作菱形,它的周长为4,在此菱形的四条边中任选一条,求其所在直线的解析式.
三.二次函数综合题(共3小题)
3.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.
(1)求此抛物线的解析式;
(2)当△OAB的面积为15时,求B的坐标;
(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.
4.(2021•常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).
(1)求过B、E、C三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线EF上;
(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.
5.(2023•常德)如图,二次函数的图象与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;
(2)求四边形ACDB的面积;
(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.
四.三角形综合题(共1小题)
6.(2023•常德)如图,在△ABC中,AB=AC,D是BC的中点,延长DA至E,连接EB.EC.
(1)求证:△BAE≌△CAE;
(2)在如图1中,若AE=AD,其它条件不变得到图2,在图2中过点D作DF⊥AB于F,设H是EC的中点,过点H作HG∥AB交FD于G,交DE于M.
求证:①AF•MH=AM•AE;
②GF=GD.
五.切线的判定与性质(共2小题)
7.(2023•常德)如图,四边形ABCD是⊙O的内接四边形,AB是直径,C是的中点,过点C作CE⊥AD交AD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若BC=6,AC=8,求CE,DE的长.
8.(2021•常德)如图,在Rt△ABC中,∠ABC=90°,以AB的中点O为圆心,AB为直径的圆交AC于D,E是BC的中点,DE交BA的延长线于F.
(1)求证:FD是圆O的切线:
(2)若BC=4,FB=8,求AB的长.
六.相似形综合题(共2小题)
9.(2021•常德)如图1,在△ABC中,AB=AC,N是BC边上的一点,D为AN的中点,过点A作BC的平行线交CD的延长线于T,且AT=BN,连接BT.
(1)求证:BN=CN;
(2)在图1中AN上取一点O,使AO=OC,作N关于边AC的对称点M,连接MT、MO、OC、OT、CM得图2.
①求证:△TOM∽△AOC;
②设TM与AC相交于点P,连接PD,求证:PD∥CM,PD=CM.
10.(2022•常德)在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE交BC于O,连接GD.
(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.
(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.
七.解直角三角形的应用(共2小题)
11.(2023•常德)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)
12.(2022•常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
八.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2021•常德)今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A处测得国旗D处的仰角为45°,站在同一队列B处的小刚测得国旗C处的仰角为23°,已知小明目高AE=1.4米,距旗杆CG的距离为15.8米,小刚目高BF=1.8米,距小明24.2米,求国旗的宽度CD是多少米?(最后结果保留一位小数)
(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245)
九.列表法与树状图法(共1小题)
14.(2021•常德)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗;B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种.图1与图2是根据此次调查得到的统计图(不完整).
请根据统计图回答下列问题
(1)此次抽样调查的人数是多少人?
(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?
(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.
(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.
湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.分式方程的应用(共1小题)
1.(2023•常德)“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.
(1)求A型玩具和B型玩具的进价分别是多少?
(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?
【答案】(1)A型玩具的进价是10元/个,B型玩具的进价是15元/个.
(2)最多可购进A型玩具25个.
【解答】解:(1)设A型玩具的进价为x元/个,则B型玩具的进价是1.5x元/个.
由题意得:,
解得:x=10,
经检验,x=10是原方程的解,
∴B型玩具的进价为10×1.5=15(元/个),
答:A型玩具的进价是10元/个,B型玩具的进价是15元/个.
(2)设购买A型玩具m个,则购进B型玩具(75﹣m)个.
根据题意得,(12﹣10)m+(20﹣15)(75﹣m)≥300,
解得:m≤25,
答:最多可购进A型玩具25个.
二.反比例函数综合题(共1小题)
2.(2022•常德)如图,已知正比例函数y1=x与反比例函数y2的图象交于A(2,2),B两点.
(1)求y2的解析式并直接写出y1<y2时x的取值范围;
(2)以AB为一条对角线作菱形,它的周长为4,在此菱形的四条边中任选一条,求其所在直线的解析式.
【答案】(1)x<﹣2或0<x<2;
(2)AD所在直线的解析式为y=3x﹣4,BC所在直线的解析式为y=3x+4,AC所在直线的解析式为y=x+,BD所在直线的解析式为y=x﹣.
【解答】解:(1)设反比例函数y2=,把A(2,2)代入,得:2=,
解得:k=4,
∴y2=,
由,解得:,,
∴B(﹣2,﹣2),
由图象可知:当y1<y2时,x<﹣2或0<x<2;
注明:也可以直接利用反比例函数和正比例函数图象的对称性得出点B的坐标.
(2)过点A作AE⊥x轴于点E,过点D作DF⊥x轴于点F,
∵A(2,2),
∴AE=OE=2,
∴△AOE是等腰直角三角形,
∴∠AOE=45°,OA=AE=2,
∵四边形ACBD是菱形,
∴AB⊥CD,OC=OD,
∴∠DOF=90°﹣∠AOE=45°,
∵∠DFO=90°,
∴△DOF是等腰直角三角形,
∴DF=OF,
∵菱形ACBD的周长为4,
∴AD=,
在Rt△AOD中,OD===,
∴DF=OF=1,
∴D(1,﹣1),
由菱形的对称性可得:C(﹣1,1),
设直线AD的解析式为y=mx+n,
则,
解得:,
∴AD所在直线的解析式为y=3x﹣4;
同理可得BC所在直线的解析式为y=3x+4,AC所在直线的解析式为y=x+,BD所在直线的解析式为y=x﹣.
三.二次函数综合题(共3小题)
3.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.
(1)求此抛物线的解析式;
(2)当△OAB的面积为15时,求B的坐标;
(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.
【答案】(1)y=x2﹣4x;
(2)点B的坐标为(2,8);
(3)P(﹣2,12),PA﹣PB的最大值为3.
【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,
∴抛物线与x轴的另一个交点坐标为(4,0),
设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,
解得:a=1,
∴y=x(x﹣4)=x2﹣4x,
故此抛物线的解析式为y=x2﹣4x;
(2)∵点B是抛物线对称轴上的一点,且点B在第一象限,
∴设B(2,m)(m>0),
设直线OA的解析式为y=kx,
则5k=5,
解得:k=1,
∴直线OA的解析式为y=x,
设直线OA与抛物线对称轴交于点H,则H(2,2),
∴BH=m﹣2,
∵S△OAB=15,
∴×(m﹣2)×5=15,
解得:t=8,
∴点B的坐标为(2,8);
(3)设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,
解得:,
∴直线AB的解析式为y=﹣x+10,
当PA﹣PB的值最大时,A、B、P在同一条直线上,
∵P是抛物线上的动点,
∴,
解得:,(舍去),
∴P(﹣2,12),
此时,PA﹣PB=AB==3.
4.(2021•常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).
(1)求过B、E、C三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线EF上;
(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.
【答案】(1)y=﹣x2+x+4;
(2)抛物线的顶点在直线EF上,理由详见解析过程;
(3)P(9,﹣).
【解答】解:(1)过点D作x轴垂线交x轴于点H,如图所示:
由题意得∠EOB=∠DHC=90°,
∵AB∥CD,
∴∠EBO=∠DCH,
∴△EBO∽△DCH,
∴,
∵B(﹣2,0)、C(8,0)、D(13,10),
∴BO=2,CH=13﹣8=5,DH=10,
∴,
解得:EO=4,
∴点E坐标为(0,4),
设过B、E、C三点的抛物线的解析式为:y=a(x+2)(x﹣8),将E点代入得:
4=a×2×(﹣8),
解得:a=﹣,
∴过B、E、C三点的抛物线的解析式为:y=﹣(x+2)(x﹣8)=﹣x2+x+4;
(2)抛物线的顶点在直线EF上,理由如下:
由(1)可知该抛物线对称轴为直线x=﹣=﹣=3,
当x=3时,y=,
∴该抛物线的顶点坐标为(3,),
又∵F是AD的中点,
∴F(8,10),
设直线EF的解析式为:y=kx+b,将E(0,4),F(8,10)代入得,
解得:,
∴直线EF解析式为:y=,
把x=3代入直线EF解析式中得:y=,
故抛物线的顶点在直线EF上;
(3)由(1)(2)可知:A(3,10),
设直线AB的解析式为:y=k'x+b',将B(﹣2,0),A(3,10)代入得:
,解得:,
∴直线AB的解析式为:y=2x+4,
∵FQ∥AB,
故可设:直线FQ的解析式为:y=2x+b1,将F(8,10)代入得:
b1=﹣6,
∴直线FQ的解析式为:y=2x﹣6,
当x=0时,y=﹣6,
∴Q点坐标为(0,﹣6),
设M(0,m),直线BM的解析式为:y=k2x+b2,将M、B点代入得:
,解得:,
∴直线BM的解析式为:y=,
∵点P为直线BM与抛物线的交点,
∴联立方程组有:,
化简得:(x+2)(x﹣8+2m)=0,
解得:x1=﹣2(舍去),x2=8﹣2m,
∴点P的横坐标为:8﹣2m,
则此时,S△PBQ=MQ×(|xP|+|xB|)==﹣(m+)2+,
∵a=﹣1<0,
∴当m=﹣时,S取得最大值,
∴点P横坐标为8﹣2×(﹣)=9,
将x=9代入抛物线解析式中y=﹣,
综上所述,当△PBQ的面积最大时,P的坐标为(9,﹣).
5.(2023•常德)如图,二次函数的图象与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;
(2)求四边形ACDB的面积;
(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.
【答案】(1)y=﹣x2+4x+5;
(2)30;
(3).
【解答】解:(1)∵AO=1,tan∠ACO=,
∴OC=5,即C的坐标为(0,5),
∵二次函数的图象与x轴交于A(﹣1,0),B(5,0)两点且过C的坐标(0,5),
设二次函数的解析式为y=ax2+bx+c,代入得:
,
解得:,
∴二次函数的解析式为y=﹣x2+4x+5;
(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,
∴顶点的坐标为(2,9),
过D作DN⊥AB于N,作DM⊥OC于M,
四边形ACDB的面积=S△AOC+S矩形OMDN﹣S△CDM+S△DNB
=;
(3)如图,P是抛物线上的一点,且在第一象限,当∠ACO=∠PBC时,
连接PB,过C作CE⊥BC交BP于E,过E作EF⊥OC于F,
∵OC=OB=5,则BC=5,
∵∠ACO=∠PBC,
∴tan∠ACO=tan∠PBC,
即,
∴,
∴△EFC是等腰直角三角形,
∴FC=FE=1,
∴E的坐标为(1,6),
所以过B、E的直线的解析式为,
令,
解得,或,
所以BE直线与抛物线的两个交点为,
即所求P的坐标为.
四.三角形综合题(共1小题)
6.(2023•常德)如图,在△ABC中,AB=AC,D是BC的中点,延长DA至E,连接EB.EC.
(1)求证:△BAE≌△CAE;
(2)在如图1中,若AE=AD,其它条件不变得到图2,在图2中过点D作DF⊥AB于F,设H是EC的中点,过点H作HG∥AB交FD于G,交DE于M.
求证:①AF•MH=AM•AE;
②GF=GD.
【答案】(1)证明见解答过程;
(2)①②证明见解答过程.
【解答】证明:(1)∵AB=AC,D是BC的中点,
∴AD是BC的垂直平分线,
又∵E在AD上,
∴EB=EC,
在△BAE和△CAE中,
,
∴△BAE≌△CAE(SSS);
(2)①连接AH,
∵A,H分别是ED和EC的中点,
∴AH为△EDC的中位线,
∴AH∥DC,
∴∠EAH=∠EDC=90°,
又∵DF⊥AB,
∴∠AFD=90°,
又∵HG∥AB,
∴∠FAD=∠AMH,
∴△AFD∽△MAH,
∴=,
∴AF⋅MH=AM⋅AD,
∵AE=AD,
∴AF⋅MH=AM⋅AE;
②∵AB=AC,
∴∠ABC=∠ACB,
∵∠ABD=∠ADF=∠AHM,
∴∠AHM=∠ACB,
∴△AMH∽△DAC,
∵A、H分别为ED和EC中点,
∴AH为△EDC的中位线,
∴==,
∴AM=AD,即M为AD中点,
∵AF∥GH,
∴G为FD中点,
∴GF=GD.
五.切线的判定与性质(共2小题)
7.(2023•常德)如图,四边形ABCD是⊙O的内接四边形,AB是直径,C是的中点,过点C作CE⊥AD交AD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若BC=6,AC=8,求CE,DE的长.
【答案】(1)详见解答;
(2)DE=,EC=.
【解答】(1)证明:如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵点C是的中点,
∴∠OAC=∠CAE,
∴∠CAE=∠OCA,
∴OC∥AE,
∵AE⊥CE,
∴OC⊥CE,
∵OC是半径,
∴CE是⊙O的切线;
(2)解:∵AB为⊙O直径,
∴∠ACB=90°,
∵BC=6,AC=8,
∴AB==10,
又∵∠BAC=∠CAE,∠AEC=∠ACB=90°,
∴△AEC∽△ACB,
∴,
即,
∴,
∵点C是的中点,即=,
∴CD=BC=6,
∴,
答:DE=,EC=.
8.(2021•常德)如图,在Rt△ABC中,∠ABC=90°,以AB的中点O为圆心,AB为直径的圆交AC于D,E是BC的中点,DE交BA的延长线于F.
(1)求证:FD是圆O的切线:
(2)若BC=4,FB=8,求AB的长.
【答案】(1)见解析;
(2)﹣1.
【解答】(1)证明:
连接OD,
由题可知∠ABC=90°,
∵AB为直径,
∴∠ADB=∠BDC=90°,
∵点E是BC的中点,
∴DE=BC=BE=EC,
∴∠EDC=∠ECD,
又∵∠ECD+∠CBD=90°,∠ABD+∠CBD=90°,
∴∠ECD=∠ABD,
∵OB和OD是圆的半径,
∴∠ODB=∠OBD,
∴∠ODB+∠BDE=∠EDC+∠BDE=90°,
即∠ODE=90°,
故:FE是⊙O的切线.
(2)由(1)可知BE=EC=DE=BC=2,
在Rt△FBE中,FE===,
∴FD=FE﹣DE=﹣2,
又∵在Rt△FDO和Rt△FBE中有:∠FDO=∠FBE=90°,∠OFD=∠EFB,
∴△FDO∽△FBE,
∴,即,
求得OD=,
∴AB=2OD=﹣1,
故:AB长为﹣1.
六.相似形综合题(共2小题)
9.(2021•常德)如图1,在△ABC中,AB=AC,N是BC边上的一点,D为AN的中点,过点A作BC的平行线交CD的延长线于T,且AT=BN,连接BT.
(1)求证:BN=CN;
(2)在图1中AN上取一点O,使AO=OC,作N关于边AC的对称点M,连接MT、MO、OC、OT、CM得图2.
①求证:△TOM∽△AOC;
②设TM与AC相交于点P,连接PD,求证:PD∥CM,PD=CM.
【答案】(1)证明见解析过程;
(2)①证明见解析过程;
②证明见解析过程.
【解答】证明:(1)∵AT∥BC,
∴∠ATD=∠BCD,
∵点D是AN的中点,
∴AD=DN,
在△ATD和△NCD中,
,
∴△ATD≌△NCD(AAS),
∴CN=AT,TD=DC,
∵AT=BN,
∴BN=CN;
(2)①∵AT=BN,AT∥BN,
∴四边形ATBN是平行四边形,
∵AB=AC,BN=CN,
∴AN⊥BC,
∴平行四边形ATBN是矩形,
∴∠TAN=90°,
∵点M,点N关于AC对称,
∴CN=MC,∠ACN=∠ACM,
∴AT=CM,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠OAC+∠ACN=90°,
∴∠OCA+∠ACM=90°=∠OCM,
∴∠OCM=∠TAN,
又∵AT=CM,OA=OC,
∴△TAO≌△MCO(SAS),
∴OT=OM,∠TOA=∠COM,
∴∠TOM=∠AOC,,
∴△TOM∽△AOC;
②如图2,将CM绕点M顺时针旋转,使点C落在点E上,连接AM,TE,
∴EM=CM=AT,
∴∠MEC=∠MCE,
∵∠CAN+∠ACN=90°,
∴∠CAN+∠ACM=90°,
∴∠TAN+∠NAC+∠ACM=180°,
∴∠TAC+∠ACM=180°,
又∵∠AEM+∠CEM=180°,
∴∠TAC=∠AEM,
∴AT∥EM,
∴四边形ATEM是平行四边形,
∴TP=PM,
又∵TD=DC,
∴PD∥CM,PD=CM.
10.(2022•常德)在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE交BC于O,连接GD.
(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.
(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.
【答案】(1)证明见解析部分;
(2)证明见解析部分.
【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.
∵四边形ABCD是矩形,
∴∠BAD=∠ABC=90°,AD=BC,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∴∠AFB=∠BAF=45°,
∴BA=BF,
∵BE=CF,
∴AE=AB+BE=BF+CF=BC=AD,
∵AG=AG,
∴△EAG≌△DAG(SAS),
∴EG=DG,∠AEG=∠ADG,
∵AD∥FC,AG=GF,
∴DJ=JC,
∵GJ⊥CD,
∴GD=GC,
∴∠GDC=∠GCD,
∵∠ADC=∠BCD=90°,
∴∠ADG=∠GCO,
∴∠OEB=∠OCG,
∵∠BOE=∠GOC,
∴△OBE∽△OGC,
∴=,
∵GC=GD,BE=CF,
∴BO•GD=GO•FC;
(2)解:过点D作DT⊥BC于点T,连接GT.
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAG=∠AFB,
∵AF平分∠DAB,
∴∠DAG=∠BAF,
∴BAF=∠AFB,
∴AB=BF,
∴AE=AB+BE=BF+CF=BC=AD,
∵AG=AG,
∴△EAG≌△DAG(SAS),
∴∠AEG=∠ADG,
∵AD∥FT,AG=GF,
∴DJ=JT,
∵GJ⊥DT,
∴GD=GT,
∴∠GDT=∠GTD,
∵∠ADT=∠BTD=90°,
∴∠ADG=∠GTO,
∴∠OEB=∠OTG,
∵∠BOE=∠GOT,
∴△OBE∽△OGT,
∴=,
∵GT=GD,BE=CF,
∴BO•GD=GO•FC.
解法二:延长EG交AD于点M,在DM上取一点N,使得GN=GM.
证明△OGF≌△MGA,推出GM=OG=GN,∠AMG=∠GOF,
再证明△BOE∽△GDN,可得结论.
七.解直角三角形的应用(共2小题)
11.(2023•常德)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)
【答案】72.7cm.
【解答】解:过点F作FQ⊥CD于点Q,
∵四边形ABCD是平行四边形,∠FBA=114.2°,
∴∠FCQ=180°﹣114.2°=65.8°,FQ=FC•sin∠FCQ=57sin65.8°,
过点A作AP⊥MN于点P,
由题意知AB∥CD∥MN,FC∥AN,
则∠ANP=∠FCQ=65.8°,又AN=43cm,
∴AP=AN•sin∠ANP=43sin65.8°,
过C作CH⊥AB于点H,
∵BC=CE,EB=16.4,
∴BH=8.2,
∴CH=BH•tan∠CBH=8.2×2.23≈18.29,
∴靠背顶端F点距地面(MN)高度为
FQ+AP﹣HC=57sin65.8°+43sin65.8°﹣18.29=100×0.91﹣18.29=72.71≈72.7cm.
12.(2022•常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
【答案】此大跳台最高点A距地面BD的距离约是70米.
【解答】解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.
根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),
∵HG∥BC,
∴∠EGM=∠ECB=36°,
在Rt△AHF中,∠AFH=40°,AF=50,
∴AH=AF•sin∠AFH≈50×0.64=32(米),
在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,
∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,
EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),
∴0.73m=0.47(7﹣m),解得m≈2.7(米),
∴EM≈0.47(7﹣m)=2.021(米),
∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).
∴此大跳台最高点A距地面BD的距离约是70米.
八.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2021•常德)今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A处测得国旗D处的仰角为45°,站在同一队列B处的小刚测得国旗C处的仰角为23°,已知小明目高AE=1.4米,距旗杆CG的距离为15.8米,小刚目高BF=1.8米,距小明24.2米,求国旗的宽度CD是多少米?(最后结果保留一位小数)
(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245)
【答案】1.6米.
【解答】解:作EM⊥CG于M,FN⊥CG于N,
由题意得GB=AG+AB=15.8+24.2=40(米),
则FN=GB=40米,
在Rt△EDM中,∠DEM=45°,
∴DM=EM=15.8米,
∵MG=AE=1.4米,
∴DG=DM+MG=15.8+1.4=17.2(米),
∵NG=FB=1.8米,
∴DN=17.2﹣1.8=15.4(米),
在Rt△CNF中,∠CFN=23°,
∵tan∠CFN=≈0.4245,
∴CN=0.4245×40≈17.0(米),
∴CD=CN﹣DN=17.0﹣15.4=1.6(米)
故国旗的宽度CD约为1.6米.
九.列表法与树状图法(共1小题)
14.(2021•常德)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗;B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种.图1与图2是根据此次调查得到的统计图(不完整).
请根据统计图回答下列问题
(1)此次抽样调查的人数是多少人?
(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?
(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.
(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.
【答案】(1)200人;
(2)40%,30人;
(3)11700人;
(4).
【解答】解:(1)此次抽样调查的人数为:20÷10%=200(人);
(2)接种B类疫苗的人数的百分比为:80÷200×100%=40%,
接种C类疫苗的人数为:200×15%=30(人);
(3)18000×(1﹣35%)=11700(人),
即估计该小区所居住的18000名居民中有11700人进行了新冠疫苗接种.
(4)画树状图如图:
共有20种等可能的结果,恰好抽到一男和一女的结果有12种,
∴恰好抽到一男和一女的概率为=.
湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了﹣1+|﹣2|,÷,其中a=﹣1,解不等式组,两点,交y轴于点C等内容,欢迎下载使用。
湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案): 这是一份湖南省常德市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案),共14页。试卷主要包含了计算,﹣2sin30°+cs45°,先化简,再求值,解方程组,解方程等内容,欢迎下载使用。
湖南省益阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖南省益阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了先化简,再求值,的函数表达式为,在第一象限内的函数图象上,的顶点P在抛物线F等内容,欢迎下载使用。