![人教版八年级数学上册期末试卷第1页](http://img-preview.51jiaoxi.com/2/3/14653690/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上册期末试卷第2页](http://img-preview.51jiaoxi.com/2/3/14653690/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上册期末试卷第3页](http://img-preview.51jiaoxi.com/2/3/14653690/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版八年级数学上册期末试卷
展开
这是一份人教版八年级数学上册期末试卷,共27页。
人教版八年级数学第一学期期末试题(附答案)
1.248﹣1能被60到70之间的某两个整数整除,则这两个数是( )
A.61和63 B.63和65 C.65和67 D.64和67
2.算式99×100×101×102+1的结果可表示成一个自然数的平方,这个自然数是( )
A.10099 B.10098 C.10097 D.10096
3.已知a2+10b2+c2﹣4ab=a﹣2bc﹣,则a﹣2b+c= .
4.等腰Rt△ABC中,D为斜边AB的中点,E、F分别为腰AC、BC上(异于端点)的点,DE⊥DF,AB=10,设x=DE+DF,则x的取值范围为 .
5.如图,设P是凸四边形ABCD内的一点,过P分别作AB、BC、CD、DA的垂线,垂足分别为E、F、G、H.已知AH=3,HD=4,DG=1,GC=5,CF=6,FB=4,且BE﹣AE=1.则四边形ABCD的周长为 .
6.如图所示,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,则∠DCE的度数是 .
7.如图,在平面直角坐标系中,B(0,5),A(2,0),点C是第一象限内的点,且△ABC是以AB为直角边,满足AB=AC,则点C的坐标为 .
8.如图,等腰△ABC中,AB=AC,AE⊥BE于点E,且BE=BC,若∠EAB=20°,则∠BAC的度数是 .
9.如图,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=2,点D从B点开始运动到C点结束,DE交AC于E,∠ADE=45°,当△ADE是等腰三角形时,AE的长度为 .
10.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .
11.已知直角三角形的边长为整数,周长为30,求它的斜边长.
12.如图在△ABC中,∠ABC=60°,∠ACB=40°,P为∠ABC的平分线与∠ACB的平分线的交点,求证:AB=PC.
13.如图,△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD.
求证:BD=CD.
14.如图,△ABC为等腰直角三角形,∠BAC=90°,E、F是BC上的点,且∠EAF=45°,试探究BE2、CF2、EF2间的关系,并说明理由.
15.阅读理解:若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为364;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为40.
(1)30的“至善数”是 ,“明德数”是 .
(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;
(3)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的最大值.
16.已知:,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
17.(1)(操作发现)
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B= .
(2)(问题解决)
如图2,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;
(3) (灵活运用):如图3,在正方形ABCD内有一点P,且PA=,BP=,
PC=1,求∠BPC的度数.
18.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线L经过点A,BD⊥直线L,CE⊥直线L,垂足分别为点D、E.
证明:①△ABD≌△CAE;②DE=BD+CE.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图③,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.
19.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.
(1)求证:在运动过程中,不管取何值,都有S△AED=2S△DGC;
(2)当t取何值时,△DFE与△DMG全等;
(3)在(2)的前提下,若,,求S△BFD.
20.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.
21.在Rt△ABC中,∠ACB=90°,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,
①请你判断并写出FE与FD之间的数量关系.
②如果∠ACB不是直角,其他条件不变,①中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
22.探究:
如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;
②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程,若不成立,请说明理由.
(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC边上,且∠DAE=45°,若BD=1,请直接写出DE的长.
23.在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分别交直线AB、AC于点M、N.
(1)如图1,当α=90°时,求证:AM=CN;
(2)如图2,当α=45°时,求证:BM=AN+MN;
(3)当α=45°时,旋转∠MON至图3位置,请你直接写出线段BM、MN、AN之间的数量关系.
24.阅读下列材料,然后解决问题:和、差、倍、分等问题中有着广泛的应用,
截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.
(1)如图1,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是 ;
(2)问题解决:
如图2,在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分别是边BC,边CD上的两点,且∠EAF=∠BAD,求证:BE+DF=EF.
(3)问题拓展:
如图3,在△ABC中,∠ACB=90°,∠CAB=60°,点D是△ABC外角平分线上一点,DE⊥AC交CA延长线于点E,F是AC上一点,且DF=DB.
求证:AC﹣AE=AF.
参考答案
1.解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)
=(224+1)(212+1)(26+1)(26﹣1)
=(224+1)(212+1)×65×63,
故选:B.
2.解:设99=n,则
=
=
=
=
=n2+3n+1
=(n+1)2+n
=(99+1)2+99
=10099.
故选:A.
3.解:a2+10b2+c2﹣4ab=a﹣2bc﹣,
整理得:153a2+360b2+4c2﹣144ab=12a﹣72bc﹣4,
即(9a2﹣12a+4)+(324b2+72bc+4c2)+(144a2﹣144ab+36b2)=0,
∴(3a﹣2)2+(18b+2c)2+(12a﹣6b)2=0,
∴3a﹣2=0,18b+2c=0,12a﹣6b=0,
∴a=,b=,c=﹣12,
∴a﹣2b+c=﹣2×﹣12=﹣14;
故答案为:﹣14.
4.解:如图所示,
过点D作DM⊥AC,DN⊥BC,分别交AC、BC于M、N,
∵△ABC是等腰三角形,点D是AB的中点,
∴DM=DN,又DE⊥DF,
∴∠EDM=∠FDN,
在△EDM和△FDN中
,
∴△EDM≌△FDN(ASA),
∴DE=DF,
在Rt△ABC中,∵AB=10,
∴AC=BC=5,
当DE、DF与边垂直时和最小,即DE+DF=(AC+BC)=5,
当E或F有一个与C重合时,其和最大,即DE+DF=DC+DB=AB=10,
∴5≤x<10.
故此题的答案为:5≤x<10.
5.解:由勾股定理可得:
AP2=AH2+PH2=AE2+PE2
BP2=BE2+PE2=BF2+PF2
CP2=CF2+PF2=CG2+PG2
DP2=DG2+PG2=DH2+PH2
以上四式后一等号两边分别相加,并代入已知数值可得:
9+BE2+36+1=AE2+16+25+16
化简得:BE2﹣AE2=11,即(BE+AE)(BE﹣AE)=11,
又已知:BE﹣AE=1,
解得:BE=6,AE=5,
故周长为34.
故填:34.
6.解:∵△ABC是等腰直角三角形,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°﹣15°=30°,∠ABD=∠ABC﹣15°=30°,
∴BD=AD,
∴D在AB的垂直平分线上,
∵AC=BC,
∴C也在AB的垂直平分线上,
即直线CD是AB的垂直平分线,
∴∠ACD=∠BCD=45°,
∵∠CAD=15°,CE=CA,
∴∠CED=∠CAD=15°,
∴∠ECA=150°,
∴∠DCE=∠ECA﹣∠ACD=150°﹣45°=105°.
故答案为:105°.
7.解:作CD⊥x轴于点D,
∵∠BOA=90°,
∴∠ABO+∠BAO=90°,
∵∠BAC=90°,
∴∠CAD+∠BAO=90°,
∴∠ABO=∠CAD,
在△ABO和△CAD中,
,
∴△ABO≌△CAD(AAS),
∴CD=OA=2,AD=OB=5,
∴OD=OA+AD=2+5=7,
∴点C的坐标为(7,2),
故答案为:(7,2).
8.解:过点A作AD⊥BC于点D,如图所示.
∵等腰△ABC中,AB=AC,
∴BD=CD=BC,∠BAD=∠CAD=∠BAC.
∵BE=BC,
∴BE=BD.
在Rt△ABE和Rt△ABD中,
,
∴Rt△ABE≌Rt△ABD(HL),
∴∠BAD=∠BAE=20°,
∴∠BAC=2∠BAD=2×20°=40°.
故答案为:40°.
9.解:当EA=ED,△ADE为等腰三角形
∵∠ADE=45°,
∴∠EAD=45°,∠AED=90°,
∵∠BAC=90°,
∴AD平分∠BAC,AD⊥BC,DE⊥AC,如图1,
∵AB=AC=2,
∴DE=AC=1;
当DA=DE,△ADE为等腰三角形,如图2
∵∠ADE=45°,
∴∠ADB+∠EDC=180°﹣45°=135°,
而∠EDC+∠DEC=135°,
∴∠ADB=∠DEC,
而∠B=∠C,
∴△ABD∽△DCE,
∴BD:CE=AB:DC=AD:DE,
而AD=DE,
∴AB=DC=2,BD=CE,
∵BC=2,
∴BD=2﹣2=EC,
∴AE=AC﹣EC=2﹣(2﹣2)=4﹣2.
故答案为1或4﹣2.
10.解:
∵∠ACB=∠ECD=90°,
∴∠BCD=∠ACE,
在△BDC和△AEC中,
∴△BDC≌△AEC(SAS),
∴∠DBC=∠EAC,
∵∠EBD=∠DBC+∠EBC=38°,
∴∠EAC+∠EBC=38°,
∴∠ABE+∠EAB=90°﹣38°=52°,
∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣52°=128°,
故答案为:128°.
11.解:设直角三角形的三边长分别为a,b,c,且c是斜边,
则a+b+c=30.
∵a+b+c=30,
∴30=a+b+c<3c,
∴c>10.
∵a+b>c,a+b+c=30,
∴30=a+b+c>2c,
∴c<15.
又∵c为整数,
∴11≤c≤14,
当c=13时,三角形的边长为整数,
∴斜边长为13.
12.证明:连接AP并延长交BC于点D,作∠CAD的平分线AE,交BC于点E,
∴∠PAE=∠EAC,
∵P为∠ABC的平分线与∠ACB的平分线的交点,
∴∠BAD=∠DAC,
∵∠ABC=60°,∠ACB=40°,
∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣60°﹣40°=80.
∴∠BAD=×80°=40°,∠EAD=20°,
∴∠BAE=60°,
∴△ABE为等边三角形,
∴AE=AB,
在△ADE和△CDP中,
∴AE=PC,
∴AB=PC.
13.证明:如图,过C作CE⊥AD于E,过D作DF⊥BC于F.
∵∠CAD=30°,
∴∠ACE=60°,且CE=AC,
∵AC=AD,∠CAD=30°,
∴∠ACD=75°,
∴∠FCD=90°﹣∠ACD=15°,∠ECD=∠ACD﹣∠ACE=15°,
在△CED和△CFD中
,
∴△CED≌△CFD(AAS),
∴CF=CE=AC=BC,
∴CF=BF.
∴△CDF≌△BDF(SAS),
∴BD=CD.
14.解:BE2+CF2=EF2,
理由是:把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.
则△ACF≌△ABG.
∴AG=AF,BG=CF,∠ABG=∠ACF=45°.
∵∠BAC=90°,∠GAF=90°.
∴∠GAE=∠EAF=45°,
在△AEG和△AFE中,
,
∴△AEG≌△AFE(SAS).
∴EF=EG,
又∠GBE=90°,
∴BE2+BG2=EG2,
即BE2+CF2=EF2.
15.解:(1)30的“至善数”是360;“明德数”是30+6=36
故答案为:360;36.
(2)证明:设A的十位数字为a,个位数字为b
则其“至善数与“明德数”分别为:
100a+60+b;10a+b+6
它们的差为:
100a+60+b﹣(10a+b+6)
=90a+54
=9(10a+6)
∴其“至善数”与“明德数”之差能被9整除.
(3)设B的十位数字为a,个位数字为b
则B的至善数的各位数字之和是a+6+b
B的明德数各位数字之和是a+b+6(当0≤b<4时)或a+1+(6+b﹣10)(当4≤b≤9时)
由题意得:0≤b<4时,a+b+6=(a+6+b)
∴a+b=﹣6,不符合题意;
或者:当4≤b≤9时,a+1+(6+b﹣10)=(a+6+b)
∴a+b=12
∴当b=4,a=8时,B最大,最大值为84.
16.解:(1)①如图,作AE⊥PB于点E,
∵△APE中,∠APE=45°,PA=,
∴AE=PE=×=1,
∵PB=4,∴BE=PB﹣PE=3,
在Rt△ABE中,∠AEB=90°,
∴AB==.
②解法一:如图,因为四边形ABCD为正方形,可将
△PAD绕点A顺时针旋转90°得到△P'AB,
可得△PAD≌△P'AB,PD=P'B,PA=P'A.
∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°
∴PP′=PA=2,
∴PD=P′B===;
解法二:如图,过点P作AB的平行线,与DA的延长线交于F,与DA的
延长线交PB于G.
在Rt△AEG中,
可得AG===,EG=,PG=PE﹣EG=.
在Rt△PFG中,
可得PF=PG•cos∠FPG=PG•cos∠ABE=,FG=.
在Rt△PDF中,可得,
PD===.
(2)如图所示,
将△PAD绕点A顺时针旋转90°
得到△P'AB,PD的最大值即为P'B的最大值,
∵△P'PB中,P'B<PP'+PB,PP′=PA=2,PB=4,
且P、D两点落在直线AB的两侧,
∴当P'、P、B三点共线时,P'B取得最大值(如图)
此时P'B=PP'+PB=6,即P'B的最大值为6.
此时∠APB=180°﹣∠APP'=135度.
17.解:(1)如图1所示,连接BB′,将△ABC绕点A按顺时针方向旋转90°,
∴AB=AB′,∠B′AB=90°,
∴∠AB′B=45°,
故答案为:45°;
(2)∵△ABC是等边三角形,
∴∠ABC=60°,
将△BPC绕点B顺时针旋转60°得出△ABP′,如图2,
∴AP′=CP=1,BP′=BP=,∠PBC=∠P′BA,∠AP′B=∠BPC,
∵∠PBC+∠ABP=∠ABC=60°,
∴∠ABP′+∠ABP=∠ABC=60°,
∴△BPP′是等边三角形,
∴PP′=,∠BP′P=60°,
∵AP′=1,AP=2,
∴AP′2+PP′2=AP2,
∴∠AP′P=90°,则△PP′A是 直角三角形;
∴∠BPC=∠AP′B=90°+60°=150°;
过点B作BM⊥AP′,交AP′的延长线于点M,
∴∠MP′B=30°,BM=,
由勾股定理得:P′M=,
∴AM=1+=,
由勾股定理得:AB==.
(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,
与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,
∴∠EBP=∠EBA+∠ABP=∠ABC=90°,
∴∠BEP=(180°﹣90°)=45°,
由勾股定理得:EP=2,
∵AE=1,AP=,EP=2,
∴AE2+PE2=AP2,
∴∠AEP=90°,
∴∠BPC=∠AEB=90°+45°=135°;
18.解:(1)①如图1,∵BD⊥直线l,CE⊥直线l,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD
在△ADB和△CEA中,,
∴△ADB≌△CEA(AAS),
②∵△ADB≌△CEA,
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)DE=BD+CE.
如图2,证明如下:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠DBA=∠CAE,
在△ADB和△CEA中.
.
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)如图3,
过E作EM⊥HI于M,GN⊥HI的延长线于N.
∴∠EMI=∠GNI=90°
由(1)和(2)的结论可知EM=AH=GN
∴EM=GN
在△EMI和△GNI中,,
∴△EMI≌△GNI(AAS),
∴EI=GI,
∴I是EG的中点.
19.(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,
∴DF=DM,
∵S△AED=AE•DF,S△DGC=CG•DM,
∴=,
∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,
∴AE=2tcm,CG=tcm,
∴=2,
即=2,
∴在运动过程中,不管取何值,都有S△AED=2S△DGC.
(2)解:①当0<t<4时,点G在线段CM上,点E在线段AF上.
EF=10﹣2t,MG=4﹣t
∴10﹣2t=4﹣t,
∴t=6(不合题意,舍去);
②当4<t<5时,点G在线段AM上,点E在线段AF上.
EF=10﹣2t,MG=t﹣4,
∴10﹣2t=t﹣4,
∴t=;
综上,t=.
综上所述当t=时,△DFE与△DMG全等.
(3)解:∵t=,
∴AE=2t=(cm),
∵DF=DM,
∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,
∵AC=14cm,
∴AB=(cm),
∴BF=AB﹣AF=﹣10=(cm),
∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,
∴S△BDF=(cm2).
20.解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,
(2)成立.
连接DF,NF,
∵△ABC是等边三角形,
∴AB=AC=BC.
∵DMN为等边三角形,故DM=DN,
又∵D,E,F是三边的中点,
∴EF=DF=BF,则BD=DF,
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,
∴∠BDM=∠FDN,
在△DBM和△DFN中,
,
∴△DBM≌△DFN(SAS),
∴BM=FN,∠DFN=∠FDB=60°,
∴NF∥BD,
∵E,F分别为边AC,BC的中点,
∴EF是△ABC的中位线,
∴EF∥BD,
∴F在直线NE上,
∵BF=EF,
∴MF=EN.
(3)如图③,MF与EN相等的结论仍然成立(或MF=NE成立).
连接DF、DE,
由(2)知DE=DF,∠NDE=∠FDM,DN=DM,
在△DNE和△DMF中,
∴△DNE≌△DMF(SAS),
∴MF=NE.
21.解:①相等,
过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,
∵F是角平分线交点,
∴BF也是角平分线,
∴MF=FN,∠DMF=∠ENF=90°,
∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠DAC=∠BAC=15°,
∴∠CDA=75°,
∵∠MFC=45°,∠MFN=120°,
∴∠NFE=15°,
∴∠NEF=75°=∠MDF,
在△DMF和△ENF中,
,
∴△DMF≌△ENF(AAS),
∴FE=FD;
②成立.
过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,
∵F是角平分线交点,
∴BF也是角平分线,
∴MF=FN,∠DMF=∠ENF=90°,
∴四边形BNFM是圆内接四边形,
∵∠ABC=60°,
∴∠MFN=180°﹣∠ABC=120°,
∵∠CFA=180°﹣(∠FAC+∠FCA)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=180°﹣(180°﹣60°)=120°,
∴∠DFE=∠CFA=∠MFN=120°.
又∵∠MFN=∠MFD+∠DFN,∠DFE=∠DFN+∠NFE,
∴∠DFM=∠NFE,
在△DMF和△ENF中,
∴△DMF≌△ENF(ASA),∴FE=FD.
22.解:(1)①如图1,
∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,
∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,
∵∠ADC=90°,
∴∠ADC+∠ADG=180°
∴F、D、G共线,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,
即∠EAF=∠GAF=45°,
在△EAF和△GAF中,
,
∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=DF+DG=BE+DF,
故答案为:EF=BE+DF;
②成立,
理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,
则AE=AG,∠B=∠ADG,∠BAE=∠DAG,
∵∠B+∠ADC=180°,
∴∠ADC+∠ADG=180°,
∴C、D、G在一条直线上,
与①同理得,∠EAF=∠GAF=45°,
在△EAF和△GAF中,
,
∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=BE+DF;
(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,
∴∠ABC=∠C=45°,
由勾股定理得:BC==4,
如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF.
则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,
∵∠DAE=45°,
∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,
∴∠FAD=∠DAE=45°,
在△FAD和△EAD中,
,
∴△FAD≌△EAD(SAS),
∴DF=DE,
设DE=x,则DF=x,
∵BC=4,
∴BF=CE=4﹣1﹣x=3﹣x,
∵∠FBA=45°,∠ABC=45°,
∴∠FBD=90°,
由勾股定理得:DF2=BF2+BD2,
x2=(3﹣x)2+12,
解得:x=,
即DE=.
23.证明:(1)如图1,连接OA,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∴∠MON=∠AOC=90°,
∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,
∴△AOM≌△CON(ASA)
∴AM=CN;
(2)证明:如图2,在BA上截取BG=AN,连接GO,AO,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∵BG=AN,∠ABO=∠NAO=45°,AO=BO,
∴△BGO≌△AON(SAS),
∴OG=ON,∠BOG=∠AON,
∵∠MON=45°=∠AOM+∠AON,
∴∠AOM+∠BOG=45°,
∵∠AOB=90°,
∴∠MOG=∠MON=45°,
∵MO=MO,GO=NO,
∴△GMO≌△NMO(SAS),
∴GM=MN,
∴BM=BG+GM=AN+MN;
(3)MN=AN+BM,
理由如下:如图3,过点O作OG⊥ON,连接AO,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∴∠GBO=∠NAO=135°,
∵MO⊥GO,
∴∠NOG=90°=∠AOB,
∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,
∴△NAO≌△GBO(ASA),
∴AN=GB,GO=ON,
∵MO=MO,∠MON=∠GOM=45°,GO=NO,
∴△MON≌△MOG(SAS),
∴MN=MG,
∵MG=MB+BG,
∴MN=AN+BM.
24.解:(1)延长AD到点E使DE=AD,连接BE,
在△ADC和△EDB中,
,
∴△ADC≌△EDB(SAS),
∴BE=AC=8,
AB﹣BE<AE<AB+BE,即21﹣8<2AD<12+8,
∴2<AD<10,
故答案为:2<AD<10;
(2)证明:延长CB到G,使BG=DF,
∵∠ABC+∠ADC=180°,∠ABC+∠ABG=180°,
∴∠ADC=∠ABG,
在△ABG和△ADF中,
,
∴△ABG≌△ADF(SAS),
∴AG=AF,∠GAB=∠FAD,
∵∠EAF=∠BAD,
∴∠FAD+∠BAE=∠GAB+∠BAE=∠BAD,
∴∠GAE=∠FAE,
在△AEG和△AEF中,
,
∴△AEG≌△AEF(SAS),
∴EF=GE,
∴EF=BE+BG=BE+DF;
(3)证明:作DH⊥AB于H,在AB上截取BR=AF,
∵∠CAB=60°,∠ACB=90°,
∴∠ABC=30°,
∴AB=2AC,
∵点D是△ABC外角平分线上一点,DE⊥AC,DH⊥AB,
∴DE=DH,AH=AE,
在Rt△DEF和Rt△DHB中,
∴Rt△DEF≌Rt△DHB(HL)
∴∠DFA=∠DBA,
在△DAF和△DRB中,
,
∴△DAF≌△DRB(SAS)
∴DA=DR,
∴AH=HR=AE=AR,
∵AF=BR=AB﹣AR=2AC﹣2AE
∴AC﹣AE=AF.
相关试卷
这是一份人教版八年级数学上册期末试卷及答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版八年级数学上册期末试卷及答案,共4页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份人教版八年级数学上册期末试卷及答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。