|试卷下载
搜索
    上传资料 赚现金
    重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案)
    立即下载
    加入资料篮
    重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案)01
    重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案)02
    重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案)

    展开
    这是一份重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案),共22页。试卷主要包含了统计如下表等内容,欢迎下载使用。

    2022-2023学年重庆市大足区八年级(下)期末数学试卷
    一.选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的。
    1.(4分)下列二次根式中,是最简二次根式的是(  )
    A. B. C. D.
    2.(4分)下列各组数能作为直角三角形的三边长的是(  )
    A.1,2,3 B.1,, C.2,2,4 D.10,24,25
    3.(4分)甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如下表:





    平均数(单位:环)
    9.7
    9.3
    m
    9.6
    方差s2
    0.25
    0.28
    n
    0.27
    根据表中数据,可以判断丙是四人中成绩最好且发挥最稳定的,则m、n的值可以是(  )
    A.m=9,n=0.3 B.m=9,n=0.2 C.m=10,n=0.3 D.m=10,n=0.2
    4.(4分)周末,小明出去购物;如图是他离家的距离y(千米)与时间x(分钟)的关系图象,根据图示信息,下列说法不正确的是(  )


    A.小明去时的速度为6千米/小时
    B.小明在超市停留了10分钟
    C.小明去时花的时间大于回家所花的时间
    D.小明去时走下坡路,回家时走上坡路
    5.(4分)下列计算中,正确的是(  )
    A. B.=5
    C. D.2
    6.(4分)如图,在▱ABCD中,AE平分∠BAD交BC于E,BE=4,EC=2,则平行四边形ABCD的周长为(  )


    A.11 B.18 C.20 D.22
    7.(4分)如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高的长度是(  )


    A. B. C. D.
    8.(4分)如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点C(﹣2,1),则关于x的不等式﹣x﹣1>kx+b的解集为(  )


    A.x>﹣2 B.x<﹣2 C.x>1 D.x<1
    9.(4分)如图,在菱形ABCD中,AC与BD相交于点O,AB的垂直平分线EF交AC于点F,连接DF.若∠BAD=80°,则∠CDF的度数为(  )

    A.100° B.80° C.60° D.40°
    10.(4分)我们知道,整式,分式,二次根式等都是代数式,代数式是用基本运算符号连接起来的式子,而当被除数是一个二次根式,除数是一个整式时,求得的商就会出现类似这样的形式,我们称形如这种形式的式子称为根分式,例如都是根分式,已知两个根分式A=与B=,则下列说法:
    ①根分式A=中x的取值范围为:x>2且x≠1;
    ②存在实数x,使得B2﹣A2=1;
    ③存在无理数x,使得A2+B2是一个整数;
    其中正确的个数是(  )
    A.0 B.1 C.2 D.3
    二.填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡对应的横线上.
    11.(4分)当a<0时,=   .
    12.(4分)将直线y=x+1向下平移3个单位长度后所得直线的解析式是    .
    13.(4分)一组数据﹣2,﹣1,0,x,3的平均数是1,则x=   .
    14.(4分)已知点P(﹣1,a),点Q(2,b)在一次函数y=﹣2x+m的图象上,则a   b(填“>”“<”或“=”).
    15.(4分)直角三角形的两边长是6和8,则这个三角形的面积是   .
    16.(4分)若关于x的一次函数y=(6﹣m)x﹣3的图象不经过第二象限,且关于y的分式方程=1有非负数解,则所有满足条件的整数m的值之和是    .
    17.(4分)如图,在矩形ABCD中,在CD上取点E,连接BE,在BE上取点F,连接CF.将△BCF沿BE翻折,使得点C刚好落在AD边的G处,若∠CFG=90°,AB=3,AD=5,那么FG的长是    .​

    18.(4分)如果一个四位自然数t的各个数位上的数字均不为0,且满足千位数字与十位数字的和为8,百位数字比个位数字的大1,那么称t为“八一数”.把t的千位数字的2倍与个位数字的和记为Q(t),百位数字的2倍与十位数字的和记为P(t),若M=2000a+1000+100b+10c+d(其中1≤a≤4,1≤b≤9,1≤c≤9,1≤d≤9且a、b、c、d均为整数)是“八一数”,令G(t)=,当G(t)为整数时,则满足条件的M的最大值为    .
    三.解答题:(本大题8个小题,第19小题8分,第20~26小题每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.
    19.(8分)计算:
    (1)﹣3+;
    (2)(﹣)÷+×(﹣1).
    20.(10分)在四边形ABCD中,连接AC,∠BAC=90°,∠ADC>∠DAC.
    (1)用尺规完成以下基本作图:作AC的垂直平分线分别交AD于点E,交BC于点F,连接CE,AF;(保留作图痕迹,不写作法,不写结论)
    (2)在(1)所作的图形中,若BF=AE,证明:四边形AFCE为菱形.
    证明:∵EF为AC的垂直平分线,
    ∴   ,AE=CE,
    ∴∠FAC=   ,
    ∵∠BAC=90°,即∠BAF+∠CAF=90°,
    ∴在Rt△ABC中,∠BAC=90°,
    ∴   
    ∴∠B=∠BAF,
    ∴   ,
    ∵BF=AE,
    ∴   ,
    ∴四边形AFCE为菱形.

    21.(10分)2023年5月10日21时22分,天舟六号货运飞船在海南文昌航天发射场成功发射.某校举行了航天知识竞赛,从中随机抽取男生、女生各20名同学的竞赛成绩进行整理和分析,得分用x表示,共分成四组:
    A:42<x≤44:B:44<x≤46:C:46<x≤48:D:48<x≤50;
    下面给出了部分信息:男生在C组的数据个数为5个,20名女生的竞赛成绩为:
    50,50,48,44,46,50,46,49,50,48,45,50,50,50,49,48,50,46,50,50.
    男生竞赛成绩扇形统计图
    性别
    平均数
    中位数
    众数
    满分率
    男生
    48.05
    48.5
    a
    45%
    女生
    48.45
    b
    50
    50%
    根据以上信息,解答下列问题:
    (1)填空:a=   ,b=   ,m=   ;
    (2)根据以上数据,你认为该校女生与男生的竞赛成绩谁更好?请说明理由;
    (3)若该校有440名男生和500名女生,估计该校竞赛成绩为满分的人数.

    22.(10分)某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为16米;②根据手中剩余线的长度计算出风筝线BC的长为34米;③牵线放风筝的小明的身高为1.7米.
    (1)求此时风筝的垂直高度CE;
    (2)如果小明站在点A不动,想把风筝沿CD方向从点C的位置下降18米至点F的位置,则他还需收回风筝线多少米?

    23.(10分)如图,在矩形ABCD中AB=6,BC=4.动点P从点A出发,沿折线A→B→C运动(运动路线不包含点A、点C),当它到点C时停止,设点P运动的路程为x,连接AC、AP、PC.设△APC的面积为y.
    (1)求出y与x的函数关系式,并注明x的取值范围,在x的取值范围内画出该函数图象;
    (2)根据函数图象,写出该函数的一条性质;
    (3)若直线y=kx+6与该函数图象有两个交点,直接写出k的取值范围.
    24.(10分)为了迎接“五一”的到来,某网店上架了A、B两款产品,已知10个A产品和15个B产品的售价为2400元;30个A产品和20个B产品的售价为5200元.
    (1)每个A产品和B产品的售价分别为多少元?
    (2)已知A产品和B产品的成本分别为80元/个和50元/个.“五一”后,这两款产品持续热销,于是网店再购进了这两款产品共600个,其中B产品的数量不超过A产品数量的2倍,且购进总价不超过37800元.为回馈新老客户,网店决定对A产品降价10%后再销售,而B产品售价不变,若“五一”后网店再购进的这两款产品全部售出,则A产品购进多少个时该网店当月销售利润最大?最大利润为多少?
    25.(10分)如图1,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,点C是线段OB上一点,点D在x轴负半轴上,且OC=OD=2,直线AB与直线CD交于点E.

    (1)求直线CD的解析式和点E的坐标;
    (2)如图2,P为直线CD上一动点,当△PAB的面积为6时,求点P的坐标;
    (3)如图3,将△DBE沿水平方向平移到△AB′E′,M为直线AB上一点,N为直线CD上一点,是否存在以O、B′、M、N为顶点且以OB′为边的平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
    26.(10分)在平行四边形ABCD中.
    (1)如图1,BE⊥AD于点E,若BE=15,AB=AD=17,求BD的长;
    (2)如图2,G是AD上一点,F是CD上一点,且满足BG=BD=BF,连接CG,H是CG的中点,若BG⊥BF,求证:BH平分∠DBF;
    (3)如图3,在(2)问的条件下,若BF=6,点P在BF上,点Q在BG的延长线上且QG=PF,连接QP并以QP为斜边向左侧作等腰直角△QPM,连接MG,当MG取最小值时,请直接写出△PQM的面积.


    2022-2023学年重庆市大足区八年级(下)期末数学试卷
    参考答案与试题解析
    一.选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的。
    1.【分析】根据最简二次根式的定义,逐一判断即可解答.
    【解答】解:A、是最简二次根式,故A符合题意;
    B、=2,故B不符合题意;
    C、=|a|,故C不符合题意;
    D、=2,故D不符合题意;
    故选:A.
    2.【分析】根据勾股定理的逆定理进行计算,逐一判断即可解答.
    【解答】解:A、∵1+2=3,
    ∴不能组成三角形,
    故A不符合题意;
    B、∵12+()2=1+2=3,()2=3,
    ∴12+()2=()2,
    ∴能组成直角三角形,
    故B符合题意;
    C、∵2+2=4,
    ∴不能组成三角形,
    故C不符合题意;
    D、∵102+242=100+576=676,252=625,
    ∴102+242≠252,
    ∴不能组成直角三角形,
    故D不符合题意;
    故选:B.
    3.【分析】根据算术平均数和方差的意义求解即可.
    【解答】解:∵丙是四人中成绩最好且发挥最稳定的,
    ∴m>9.7,n<0.25,
    ∴符合此条件的是m=10,n=0.2,
    故选:D.
    4.【分析】A.去时的路程为2千米,时间为20分钟,根据“速度=路程÷时间”即可判断;B.在超市停留的时间段为函数图象水平的一段,以此即可判断;C.根据图象可知,小明去超市所花的时间为20分钟,回家所花的时间为(40﹣30)分钟,再计较大小即可判断;D.函数图象表示的是距离和时间的关系,因此不能判断出小明去时走下坡路,回家时走上坡路.
    【解答】解:A.∵小明去时的路程为2千米,时间为20分钟=小时,
    ∴小明去时的为2÷=6(千米/小时),故A选项正确,不符合题意;
    B.小明在超市停留的时间为30﹣20=10(分钟),故B选项正确,不符合题意;
    C.小明去超市所花的时间为20分钟,回家所花的时间为40﹣30=10(分钟),
    ∵20>10,
    ∴小除去时花的时间多于回家所花的时间,故C选项正确,不符合题意;
    D.∵函数图象表示的是距离和时间的关系,
    ∴不能判断出小陈去时走下坡路,回家时走上坡路,故D选项错误,符合题意.
    故选:D.
    5.【分析】依据题意,根据二次根式的混合运算法则逐项计算即可得解.
    【解答】解:由题意,对于A选项,(﹣)2=x﹣2+y≠x﹣y,
    ∴A选项错误,不符合题意.
    对于B选项,(+)×=+≠×=5,
    ∴B选项错误,不符合题意.
    对于C选项,(+1)(﹣1)=2﹣1=1,
    ∴C选项正确,符合题意.
    对于D选项,2与3不是同类二次根式不能合并,
    ∴D选项错误,不符合题意.
    故选:C.
    6.【分析】先求出平行四边形的一组邻边长,再求周长.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AD与BC平行,AD=BC,AB=CD,
    ∴∠DAE=∠AEB,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BAE=∠AEB,
    ∴BA=BE=4,
    ∵BC=BE+EC=4+2=6=AD,
    ∴平行四边形ABCD的周长为2×(6+4)=20,
    故选:C.
    7.【分析】设△ABC中BC边上的高的长度是h,利用勾股定理求出BC的长,利用三角形的面积公式求解即可.
    【解答】解:设△ABC中BC边上的高的长度是h,
    由勾股定理得,BC==,
    ∵S△ABC=3×3﹣×1×3﹣×1×2﹣×2×3
    =9﹣﹣1﹣3
    =,
    ∴BC•h=,即×h=,
    解得h=.
    故选:A.
    8.【分析】根据题意知,直线y=﹣x﹣1位于直线y=kx+b上方的部分符合题意.
    【解答】解:如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为C(﹣2,l),
    所以关于x的不等式﹣x﹣1>kx+b的解集为x<﹣2.
    故选:B.

    9.【分析】由菱形的性质可得∠DAC=40°,∠ADC=100°,AC⊥BD,DO=BO,由线段垂直平分线的性质可得AF=BF=DF,可求∠FAD=∠ADF=40°,即可求解.
    【解答】解:连接BF,

    ∵四边形ABCD是菱形,∠BAD=80°,
    ∴∠DAC=40°,∠ADC=100°,AC⊥BD,DO=BO,
    ∴BF=DF,
    ∵EF垂直平分AB,
    ∴AF=BF,
    ∴AF=DF,
    ∴∠FAD=∠ADF=40°,
    ∴∠CDF=60°,
    故选:C.
    10.【分析】对于①,根据二次根式和分式的性质判断即可;对于②,将A,B代入,再求出分式方程的解,判断即可;对于③,将A,B代入再整理,讨论得出答案.
    【解答】解:根据题意可知x﹣2≥0且x﹣1≠0,
    解得x≥2.
    所以①不正确;
    由B2﹣A2=1,得=1,
    解得x=.
    经检验,x=是原方程的增根,
    ∴存在实数x,使得B2﹣A2=1.
    所以②正确;
    根据题意,得A2+B2====1﹣.
    ∵A2+B2是一个整数,
    ∴(x﹣1)2=1,
    解得x=2或x=0.
    ∵x为无理数,
    所以③不正确.
    所以正确的有1个.
    故选:B.
    二.填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡对应的横线上.
    11.【分析】直接利用二次根式的性质化简得出答案.
    【解答】解:当a<0时,=﹣a.
    故答案为:﹣a.
    12.【分析】根据平移k值不变及上移加,下移减可得出答案.
    【解答】解:平移后的解析式为:y=x+1﹣3=x﹣2.
    故答案是:y=x﹣2.
    13.【分析】根据题意,可以列出方程(﹣2﹣1+1+x+3)÷5=1,然后求解即可.
    【解答】解:∵一组数据﹣2,﹣1,0,x,3的平均数是1,
    ∴(﹣2﹣1+1+x+3)÷5=1,
    解得x=4,
    故答案为:4.
    14.【分析】由k=﹣2<0,利用一次函数的性质,可得出y随x的增大而减小,再结合﹣1<2,即可得出a>b.
    【解答】解:∵k=﹣2<0,
    ∴y随x的增大而减小,
    又∵点P(﹣1,a),点Q(2,b)在一次函数y=﹣2x+m的图象上,且﹣1<2,
    ∴a>b.
    故答案为:>.
    15.【分析】求直角三角形的面积时,只需知道两直角边即可,利用勾股定理可以已知直角三角形的两边长求第三边,在解题时要分清直角边和斜边.
    【解答】解:当6和8是两直角边时,
    此时三角形的面积为:×6×8=24,
    当8是斜边时,设另一条直角边为h,
    由勾股定理得:h==2,
    此时三角形的面积为:×6×2=6.
    故答案为:24或6.
    16.【分析】先根据一次函数的性质和分式方程有非负数解,得出m的取值范围,再根据m为整数即可求出结果.
    【解答】解:∵关于x的一次函数y=(6﹣m)x﹣3的图象不经过第二象限,
    ∴6﹣m>0,
    ∴m<6,
    原分式方程可化为,
    方程两边都乘y﹣1得,2y﹣(m﹣2)=y﹣1,
    整理得,y=m﹣3,
    ∵关于y的分式方程有非负数解,
    ∴y≥0且y≠1,
    ∴m﹣3≥0且m﹣3≠1,
    解得m≥3且m≠4,
    ∴3≤m<6且m≠4,
    ∵m为整数,
    ∴m=3或5,
    ∴满足条件的整数m的值之和为3+5=8,
    故答案为:8.
    17.【分析】由折叠可知,BC=BG=5,CF=GF,于是在Rt△ABG中,利用勾股定理求得AG=4,进而可求出DG=1,在Rt△CDG中,利用勾股定理可求出CG=,易得△CFG为等腰直角三角形,由等腰直角三角形斜边和直角边的关系即可求解.
    【解答】解:如图,连接CG,

    ∵四边形ABCCD为矩形,AB=3,AD=5,
    ∴∠A=∠D=90°,AB=CD=3,BC=AD=5,
    由折叠可知,BC=BG=5,CF=GF,
    在Rt△ABG中,AG===4,
    ∴DG=AD﹣AG=5﹣4=1,
    在Rt△CDG中,CG===,
    ∵∠CFG=90°,CF=GF,
    ∴△CFG为等腰直角三角形,
    ∴FG===.
    故答案为:.
    18.【分析】先找出M的各个位数上的数字,再分别求出P(t)、Q(t)、G(t),再根据整除的意义验证求解.
    【解答】解:∵M=2000a+1000+100b+10c+d=1000(2a+1)+100b+10c+d,
    ∵t的千位数字为(2a+1),百位数字为b,十位数字为c,各位数字为d,
    ∴2a+1+c=8,b﹣d=1,
    ∴P(t)=2b+c=2b+7﹣2a,
    Q(t)=2(2a+1)+d=4a+d+2=4a+b+1,
    ∴G(t)==﹣2+为整数,
    ∵≤a≤4,1≤b≤9,1≤c≤9,1≤d≤9且a、b、c、d均为整数,
    ∴当a=2时,b=6,c=3,d=5,此时:M=5635,
    当a=3时,b=2,c=1,d=1,此时:M=7211,
    当a=3时,b=3,c=1,d=2,此时:M=7312,
    当a=3时,b=4,c=1,d=3,此时:M=7413,
    ∵7413>7312>7111>5635,
    故M的最大值为:7413,
    故答案为:7413.
    三.解答题:(本大题8个小题,第19小题8分,第20~26小题每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.
    19.【分析】(1)依据题意,根据二次根式的加减混合运算法则进行计算可以得解;
    (2)依据题意,根据二次根式的混合运算法则进行计算可以得解.
    【解答】解:(1)由题意,原式=2﹣3×+×4
    =2﹣+2
    =3.
    (2)原式=(3﹣2)÷+×﹣
    =﹣2+4﹣
    =2.
    20.【分析】(1)根据线段垂直平分线的基本作图步骤完成即可.
    (2)根据线段垂直平分线的性质,等量代换,菱形的判断证明即可.
    【解答】解:(1)如图所示,EF即为所求;

    则直线EF即为所求.
    (2)∵EF为AC的垂直平分线,
    ∴AF=CF,AE=CE,
    ∴∠FAC=∠FCA,
    ∵∠BAC=90°,即∠BAF+∠CAF=90°,
    在Rt△ABC中,∠B+∠ACF=90°.
    ∴∠B=∠BAF,
    ∴BF=AF.
    ∵BF=AE,
    ∴AE=AF=FC=CE,
    ∴四边形AFCE为菱形.
    21.【分析】(1)根据中位数和众数的定义求a和b,求出女生C组的百分比即可得m的值;
    (2)根据平均数、中位数、众数和满分率的意义即可求解;
    (3)用满分率乘总人数可得答案.
    【解答】解:(1)因为男生的满分率为45%,所以众数a=50;
    把20名女生的竞赛成绩从小到大排列为:44,45,46,46,46,48,48,48,49,49,50,50,50,50,50,50,50,50,50,50,排在中间的两个数是49、50,故中位数b==49.5,
    m%=1﹣50%﹣10%﹣=15%,故m=15.
    故答案为:50,49.5,15.
    (2)女生的竞赛成绩更好,理由如下:
    因为女生的平均数,中位数和满分率都比男生的高,所以女生的竞赛成绩更好.
    (3)440×45%+500×50%=448(人),
    答:估计该校竞赛成绩为满分的人数数约448人.
    22.【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;
    (2)根据勾股定理即可得到结论.
    【解答】解:(1)在Rt△CDB中,
    由勾股定理得,CD2=BC2﹣BD2=342﹣162=900,
    所以,CD=30(负值舍去),
    所以,CE=CD+DE=30+1.7=31.7(米),
    答:风筝的高度CE为31.7米;
    (2)由题意得,CF=18米,
    ∴DF=12,
    ∴BF===20(米),
    ∴BC﹣BF=34﹣20=14(米),
    ∴他应该往回收线14米.
    23.【分析】(1)根据点P的移动轨迹,分阶段分情况讨论计算面积;
    (2)根据函数的图象分析性质即可;
    (3)求得直线分别过点(6,12)和点(10,0)时的k的值,然后结合图象即可求得.
    【解答】解:(1)点P在AB之间移动时,0≤x≤6,△APC的面积y===2x;
    点P在BC之间移动时,即6<x≤10时,△APC的面积y==(10﹣x)×6=30﹣3x;
    ∴y=,
    在x的取值范围内画出y的函数图象如图.

    (2)根据图象可知:当0≤x≤6时,y随着x的增大而增大;当6<x≤10时,y随着x的增大而减小.
    (3)把点(6,12)代入y=kx+6得,12=6k+6,解得k=1;
    把点(10,0)代入y=kx+6得,0=12k+6,解得k=﹣;
    ∴若直线y=kx+6与该函数图象有两个交点,则k的取值范围是k<﹣或k>1.
    24.【分析】(1)设每个A产品的售价为x元,每个B产品的售价为y元,根据“10个A产品和15个B产品的售价为2400元;30个A产品和20个B产品的售价为5200元”,可列出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设“五一”后网店再次购进m个A产品,则购进(600﹣m)个B产品,根据“购进B产品的数量不超过A产品数量的2倍,且购进总价不超过37800元”,可列出关于m的一元一次不等式组,解之可得出m的取值范围,设“五一”后网店再购进的这两款产品全部售出后获得的总利润为w元,利用总利润=每个的销售利润×销售数量(购进数量),可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.
    【解答】解:(1)设每个A产品的售价为x元,每个B产品的售价为y元,
    根据题意得:,
    解得:.
    答:每个A产品的售价为120元,每个B产品的售价为80元;
    (2)设“五一”后网店再次购进m个A产品,则购进(600﹣m)个B产品,
    根据题意得:,
    解得:200≤m≤260.
    设“五一”后网店再购进的这两款产品全部售出后获得的总利润为w元,则w=[120×(1﹣10%)﹣80]m+(80﹣50)(600﹣m),
    即w=﹣2m+18000,
    ∵﹣2<0,
    ∴w随m的增大而减小,
    ∴当m=200时,w取得最大值,最大值=﹣2×200+18000=17600.
    答:A产品购进200个时该网店当月销售利润最大,最大利润为17600元.
    25.【分析】(1)根据题意得出点C和点D的坐标,用待定系数法求出直线CD的解析式,联立直线CD和直线AB的解析式求出点E的坐标即可;
    (2)先判断PE⊥AB,根据P点在直线CD上设出P点的坐标,根据三角形面积公式列方程求解即可;
    (3)根据平移的性质得出B'的坐标,设出点M和点N的坐标,根据平行四边形的性质分情况列方程组求解即可.
    【解答】解:(1)∵OC=OD=2,
    ∴C(0,2),D(﹣2,0),
    设直线CD的解析式为y=kx+b,
    则,
    解得,
    ∴直线CD的解析式为y=x+2,
    联立直线AB和直线CD的解析式得,

    解得,
    ∴E(,);
    (2)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,
    ∴OA=OB=3,
    ∵OC=OD=2,
    ∴△COD和△AOB都是等腰直角三角形,
    ∴∠EDA=∠EAD=45°,
    ∴△ADE也是等腰直角三角形,
    即PE⊥AB,
    ∵点P在直线y=x+2上,
    设P点坐标为(t,t+2),
    ∵E(,),
    ∴PE==|t﹣|,
    ∵AB==3,
    又∵△PAB的面积为6,
    ∴AB•PE=6,
    即×|t﹣|=6,
    解得t=﹣或t=,
    ∴P点的坐标为(﹣,)或(,);
    (3)存在,理由如下:
    由平移知,B’点的坐标为(3,5),
    设M(m,﹣m+3),N(n,n+2),
    ①平行四边形以OM和B'N为对角线时,

    解得,
    此时M(﹣,),N(﹣,﹣);
    ②平行四边形以ON和B'M为对角线时,

    解得,
    此时M(,),N(,);
    综上所述,符合条件的M和N的坐标为M(﹣,),N(﹣,﹣)或M(,),N(,).
    26.【分析】(1)在直角三角形ABE中求得AE,进而得出DE,在直角三角形BED中求得BD;
    (2)延长BH,交AD的延长线于T,连接CT,设BT,CD交于O,可推出∠GDF=135°,从而得出∠ODF=45°,可证得△GTH≌△CBH,从而得出BH=TH,从而四边形BCTG是平行四边形,从而CT=BG,进而得出四边形BCTD是等腰梯形,从而得出∠DTO=∠ODT=45°,进一步得出∠DOT=90°,进而得出结论;
    (3)作射线BM,可得出∠PMQ=∠GBF=90°,从而得出点B、P、Q、M共圆,从而∠QBM=∠MPQ=45°,从而点M在与BG夹角为45° 的射线上运动,作GR⊥BM于R,当M在点R处时,CM最小,此时点Q在G处,点P在F处,可推出∠RGF=90°,GR=BG=3,GF=BG=6,进一步得出结果.
    【解答】(1)解:∵BE⊥AD,
    ∴∠AEB=∠BED=90°,
    ∴AE=,
    ∴DE=AD﹣AE=17﹣8=9,
    ∴BD==3;
    (2)证明:如图1,

    延长BH,交AD的延长线于T,连接CT,设BT,CD交于O,
    ∵BG=BD=BF,
    ∴∠BGD=∠BDG,∠BDF=∠BFD,
    ∵(∠GBD+∠BGD+∠BDG)+(∠DBF+∠BDF+∠BFD)=360°,
    ∴(∠GBD+2∠BDG)+(∠DBF+2∠BDG)=360°,
    ∴(∠GBD+∠DBF)+2(∠GDF+∠BDF)=360°,
    ∴90°+2∠GDF=360°,
    ∴∠GDF=135°,
    ∴∠ODF=45°,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠TGH=∠BCH,∠GTH=∠CBH,
    ∵H是CG的中点,
    ∴GH=CH,
    ∴△GTH≌△CBH(AAS),
    ∴BH=TH,
    ∴四边形BCTG是平行四边形,
    ∴CT=BG,
    ∵BD=BG,
    ∴CT=BD,
    ∴四边形BCTD是等腰梯形,
    ∴∠DTO=∠ODT=45°,
    ∴∠DOT=90°,
    ∴BO⊥DF,
    ∵BD=BF,
    ∴BH平分∠DBF;
    (3)解:如图2,

    作射线BM,
    ∵△PQM是以PQ为斜边的等腰直角三角形,
    ∴∠PMQ=90°,∠MPQ=45°,
    ∵∠GBF=90°,
    ∴∠PMQ=∠GBF,
    ∴点B、P、Q、M共圆,
    ∴∠QBM=∠MPQ=45°,
    ∴点M在与BG夹角为45° 的射线上运动,
    作GR⊥BM于R,当M在点R处时,CM最小,此时点Q在G处,点P在F处,
    ∵BF=BG,∠GBF=90°,
    ∴∠FGB=45°,
    ∴∠FGB=∠GBR=45°,
    ∴FG∥BR,
    ∵GR⊥BM,
    ∴RG⊥FG,
    ∴∠RGF=90°,
    在等腰直角三角形BGR中,
    GR=BG=3,
    在等腰直角三角形GBF中,
    GF=BG=6,
    ∴S△RGF=RG•FG==18,
    即:当MG取最小值时,△PQM的面积为:18.


    相关试卷

    重庆市大足区2022-2023学年七年级下学期期末数学试卷(含答案): 这是一份重庆市大足区2022-2023学年七年级下学期期末数学试卷(含答案),共29页。试卷主要包含了)下列各数中,无理数是,)如图,是直线上一点,若,则为,估计的取值范围是,)对、定义一种新运算,规定等内容,欢迎下载使用。

    2022-2023学年重庆市大足区八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年重庆市大足区八年级(下)期末数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案): 这是一份重庆市大足区2022-2023学年八年级下学期期末数学试卷(含答案),共22页。试卷主要包含了统计如下表等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map