初中数学人教版九年级上册22.3 实际问题与二次函数完美版ppt课件
展开 22.3.1实际问题与二次函数 最值问题
一.选择题
1.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )
A.3s B.4s C.5s D.10s
2.(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线;
③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第8秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的?( )
A.第11秒 B.第10秒 C.第9秒 D.第8秒
4.(2017•江北区模拟)如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得( )
A.比开始高0.8m B.比开始高0.4m C.比开始低0.8m D.比开始低0.4m
5.(2017春•太和县校级月考)如图,一边靠墙(墙有足够长),其他三边用20米长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( )平方米.
A.40 B.50 C.60 D.以上都不对
二.填空题
6.(2017•青羊区模拟)如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C点在斜边上,设矩形的一边AB=xm,矩形的面积为ym2,则y的最大值为 .
7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.动点P从A点开始沿AB向B点以1cm/s的速度运动(不与B点重合),动点Q从B点开始沿BC以2cm/s的速度向C点运动(不与C重合).如果P、Q同时出发,四边形APQC的面积最小时,要经过 秒.
8.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为 m2.
9.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是 m.
三.解答题
10. 如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.
(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)
(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?
11.(2017•德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.
(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度的多少?
12.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站
A
B
C
D
E
x(千米)
8
9
10
11.5
13
y1(分钟)
18
20
22
25
28
(1)求y1关于x的函数表达式;
(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
参考答案
一.选择题
二.填空题
6.300m2.
7.3.
8. 144.
9.3.
三.解答题
10.【解答】解:(1)抛物线的顶点坐标是(4,3),
设抛物线的解析式是:y=a(x﹣4)2+3,
把(10,0)代入得36a+3=0,
解得a=﹣,
则抛物线是y=﹣(x﹣4)2+3,
当x=0时,y=﹣×16+3=3﹣=<2.44米,
故能射中球门;
(2)当x=2时,y=﹣(2﹣4)2+3=>2.52,
∴守门员乙不能阻止球员甲的此次射门,
当y=2.52时,y=﹣(x﹣4)2+3=2.52,
解得:x1=1.6,x2=6.4(舍去),
∴2﹣1.6=0.4(m),
答:他至少后退0.4m,才能阻止球员甲的射门.
11.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,
设抛物线的解析式为
:y=a(x﹣1)2+h,
代入(0,2)和(3,0)得:,
解得:,
∴抛物线的解析式为:y=﹣(x﹣1)2+;
即y=﹣x2+x+2(0≤x≤3);
(2)y=﹣x2+x+2(0≤x≤3),
当x=1时,y=,
即水柱的最大高度为m.
12.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:
,
解得:,
故y1关于x的函数表达式为:y1=2x+2;
(2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,
∴当x=9时,y有最小值,ymin==39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
初中数学人教版九年级上册22.3 实际问题与二次函数获奖课件ppt: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数获奖课件ppt,共33页。PPT课件主要包含了素养考点1等内容,欢迎下载使用。
数学九年级上册第二十二章 二次函数22.3 实际问题与二次函数优秀课件ppt: 这是一份数学九年级上册第二十二章 二次函数22.3 实际问题与二次函数优秀课件ppt,共6页。
人教版 九年级上册 二次函数的最值问题 课件: 这是一份人教版 九年级上册 二次函数的最值问题 课件,共14页。PPT课件主要包含了课件说明,温故而知新,初露锋芒,小试牛刀,课堂小结,华山论剑等内容,欢迎下载使用。