|试卷下载
搜索
    上传资料 赚现金
    湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    立即下载
    加入资料篮
    湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类01
    湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类02
    湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类03
    还剩39页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

    展开
    这是一份湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共42页。

    湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    一.二次函数的应用(共1小题)
    1.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
    第x天
    1
    2

    6

    11

    15
    供应量y1(个)
    150
    150+m

    150+5m

    150+10m

    150+14m
    需求量y2(个)
    220
    229

    245

    220

    164
    (1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)
    (2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
    (3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
    二.二次函数综合题(共3小题)
    2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.
    (1)直接写出抛物线和直线BC的解析式;
    (2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;
    (3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.

    3.(2021•随州)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).
    (1)直接写出抛物线的解析式;
    (2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;
    (3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.

    4.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.


    三.矩形的性质(共1小题)
    5.(2023•随州)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.
    (1)求证:四边形OCED是菱形;
    (2)若BC=3,DC=2,求四边形OCED的面积.

    四.四边形综合题(共1小题)
    6.(2022•随州)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
    (1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)

    公式①:(a+b+c)d=ad+bd+cd
    公式②:(a+b)(c+d)=ac+ad+bc+bd
    公式③:(a﹣b)2=a2﹣2ab+b2
    公式④:(a+b)2=a2+2ab+b2
    图1对应公式    ,图2对应公式    ,图3对应公式    ,图4对应公式    .
    (2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
    (3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.
    ①若E为边AC的中点,则的值为    ;
    ②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.

    五.切线的性质(共2小题)
    7.(2022•随州)如图,已知D为⊙O上一点,点C在直径BA的延长线上,BE与⊙O相切,交CD的延长线于点E,且BE=DE.
    (1)判断CD与⊙O的位置关系,并说明理由;
    (2)若AC=4,sinC=,
    ①求⊙O的半径;
    ②求BD的长.

    8.(2021•随州)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
    (1)求证:AB=BC;
    (2)若⊙O的直径AB为9,sinA=.
    ①求线段BF的长;
    ②求线段BE的长.

    六.切线的判定与性质(共1小题)
    9.(2023•随州)如图,AB是⊙O的直径,点E,C在⊙O上,点C是的中点,AE垂直于过C点的直线DC,垂足为D,AB的延长线交直线DC于点F.
    (1)求证:DC是⊙O的切线;
    (2)若AE=2,sin∠AFD=,
    ①求⊙O的半径;
    ②求线段DE的长.

    七.圆的综合题(共1小题)
    10.(2021•随州)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.
    (1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为    ,其内切圆的半径长为    ;
    (2)①如图1,P是边长为a的正△ABC内任意一点,点O为△ABC的中心,设点P到△ABC各边距离分别为h1,h2,h3,连接AP,BP,CP,由等面积法,易知a(h1+h2+h3)=S△ABC=3S△OAB,可得h1+h2+h3=   ;(结果用含a的式子表示)

    ②如图2,P是边长为a的正五边形ABCDE内任意一点,设点P到五边形ABCDE各边距离分别为h1,h2,h3,h4,h5,参照①的探索过程,试用含a的式子表示h1+h2+h3+h4+h5的值.(参考数据:tan36°≈,tan54°≈)
    (3)①如图3,已知⊙O的半径为2,点A为⊙O外一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积为    ;(结果保留π)
    ②如图4,现有六边形花坛ABCDEF,由于修路等原因需将花坛进行改造,若要将花坛形状改造成五边形ABCDG,其中点G在AF的延长线上,且要保证改造前后花坛的面积不变,试确定点G的位置,并说明理由
    八.几何变换综合题(共1小题)
    11.(2023•随州)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
    (1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
    当△ABC的三个内角均小于120°时,
    如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,
    由PC=P′C,∠PCP′=60°,可知△PCP′为    三角形,故PP′=PC,又P′A′=PA,故PA+PB+PC=P′A′+PB+PP′≥A′B,
    由    可知,当B,P,P′,A′在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,
    且有∠APC=∠BPC=∠APB=   ;
    已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为    点.
    (2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;

    (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=2km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,a元/km,选取合适的P的位置,可以使总的铺设成本最低为    元.(结果用含a的式子表示)
    九.解直角三角形的应用-仰角俯角问题(共1小题)
    12.(2023•随州)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)
    (1)求点D到地面BC的距离;
    (2)求该建筑物的高度AB.

    一十.列表法与树状图法(共1小题)
    13.(2021•随州)疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:

    已接种
    未接种
    合计
    七年级
    30
    10
    40
    八年级
    35
    15
    a
    九年级
    40
    b
    60
    合计
    105
    c
    150
    (1)表中,a=   ,b=   ,c=   ;
    (2)由表中数据可知,统计的教师中接种率最高的是    年级教师;(填“七”或“八”或“九”)
    (3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有    人;
    (4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感受,请用列表或画树状图的方法,求选中的两名教师恰好不在同一年级的概率.

    湖北省随州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.二次函数的应用(共1小题)
    1.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
    第x天
    1
    2

    6

    11

    15
    供应量y1(个)
    150
    150+m

    150+5m

    150+10m

    150+14m
    需求量y2(个)
    220
    229

    245

    220

    164
    (1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)
    (2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
    (3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
    【答案】(1)y1=mx+150﹣m,y2=﹣x2+12x+209;
    (2)m的值为20或21;
    (3)第4天的销售额为21000元,第12天的销售额为20900元.
    【解答】解:(1)根据题意得:y1=150+(x﹣1)m=mx+150﹣m,
    设y2=ax2+bx+c,将(1,220),(2,229),(6,245)代入得:

    解得,
    ∴y2=﹣x2+12x+209;
    (2)前9天的总供应量为150+(150+m)+(150+2m)+......+(150+8m)=(1350+36m)个,
    前10天的供应量为1350+36m+(150+9m)=(1500+45m)个,
    在y2=﹣x2+12x+209中,令x=10得y=﹣102+12×10+209=229,
    ∵前9天的总需求量为2136个,
    ∴前10天的总需求量为2136+229=2365(个),
    ∵前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量,
    ∴,
    解得19≤m<21,
    ∵m为正整数,
    ∴m的值为20或21;
    (3)由(2)知,m最小值为20,
    ∴第4天的销售量即供应量为y1=4×20+150﹣20=210,
    ∴第4天的销售额为210×100=21000(元),
    而第12天的销售量即需求量为y2=﹣122+12×12+209=209,
    ∴第12天的销售额为209×100=20900(元),
    答:第4天的销售额为21000元,第12天的销售额为20900元.
    二.二次函数综合题(共3小题)
    2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.
    (1)直接写出抛物线和直线BC的解析式;
    (2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;
    (3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.

    【答案】(1)抛物线解析式:y=﹣x2+x+2,直线BC:y=﹣x+2.
    (2)m=1或m=或m=2.
    (3)P(),Q(0, )或P(),Q(0.)或P(),Q(0,1)或P(1+),Q(0,﹣2).
    【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0),
    ∴抛物线的表达式为y=a(x+1)(x﹣2),
    将点C(0,2)代入得,2=﹣2a,
    ∴a=﹣1,
    ∴抛物线的表达式为y=﹣(x+1)(x﹣2),即y=﹣x2+x+2.
    设直线BC的表达式为y=kx+t,
    将B(2,0),C(0,2)代入得,

    解得,
    ∴直线BC的表达式为y=﹣x+2.
    (2)∵点M在直线BC上,且P(m,n),
    ∴点M的坐标为(m,﹣m+2),
    ∴OC=2
    ∴CM2=(m﹣0)2+(﹣m+2﹣2)2=2m2,OM2=m2+(﹣m+2)2=2m2﹣4m+4,
    当△OCM为等腰三角形时,
    ①若CM=OM,则CM2=OM2,
    即2m2=2m2﹣4m+4,
    解得m=1;
    ②若CM=OC,则CM2=OC2,
    即2m2=4,
    解得或m=﹣(舍去);
    ③若OM=OC,则OM2=OC2,
    即2m2﹣4m+4=4,
    解得m=2或m=0(舍去).
    综上,m=1或m=或m=2.
    (3)∵点P与点C相对应,
    ∴△POQ∽△CBN或△POQ∽△CNB,
    ①若点P在点B的左侧,
    则,
    当△POQ∽△CBN,即∠POQ=45°时,
    直线OP的表达式为y=x,
    ∴﹣m2+m+2=m,
    解得或m=﹣(舍去),
    ∴,即OP=2,
    ∴,即,
    解得OQ=,
    ∴,
    当△POQ∽△CNB,即∠PQO=45°时,

    ∴,即,
    解得m=1±(舍去).
    当△POQ∽△CNB,即∠PQO=45°时,
    PQ=,OQ=m﹣(﹣m2+m+2)=m2﹣2,
    ∴,即,
    解得m=,(负值舍去),
    ∴P(),Q(0.).
    ②若点P在点B的右侧,
    则∠CBN=135°,BN=m﹣2,
    当△POQ∽△CBN,即∠POQ=135°时,
    直线OP的表达式为y=﹣x,
    ∴﹣m2+m+2=﹣m,
    解得m=1+或m=1﹣(舍去),
    ∴,
    ∴,即,
    解得OQ=1,
    ∴,
    当△POQ∽△CNB,即∠PQO=135°时,
    PQ=,OQ=|﹣m2+m+2+m|=m2﹣2m﹣2,
    ∴,即,
    解得m=1+或m=1﹣(舍去),
    ∴,
    综上,P(),Q(0, )或P(),Q(0.)或P(),Q(0,1)或P(1+),Q(0,﹣2).
    3.(2021•随州)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).
    (1)直接写出抛物线的解析式;
    (2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;
    (3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.

    【答案】(1)y=x2﹣2x﹣3;
    (2)P1(4,5),P2(,﹣);
    (3)M1(,),Q1(﹣,);M2(,﹣),Q2(﹣,﹣);M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).
    【解答】解:(1)∵顶点D的坐标为(1,﹣4),
    ∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,
    得0=a(﹣1﹣1)2﹣4,
    解得:a=1,
    ∴y=(x﹣1)2﹣4=x2﹣2x﹣3,
    ∴该抛物线的解析式为y=x2﹣2x﹣3;
    (2)∵抛物线对称轴为直线x=1,A(﹣1,0),
    ∴B(3,0),
    设直线BD解析式为y=kx+e,
    ∵B(3,0),D(1,﹣4),
    ∴,
    解得:,
    ∴直线BD解析式为y=2x﹣6,
    ①当点P在直线BC的上方时,如图1,过点C作CP1∥BD,交抛物线于点P1,
    设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,
    得﹣3=2×0+d,
    解得:d=﹣3,
    ∴直线CP1的解析式为y=2x﹣3,
    结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,
    解得:x1=0(舍),x2=4,
    故P1(4,5);
    ②当点P在直线BC的下方时,
    方法一:如图1,过点B作y轴平行线,过点C作x轴平行线交于点G,
    ∵OB=OC,∠BOC=∠OBG=∠OCG=90°,
    ∴四边形OBGC是正方形,
    设CP1与x轴交于点E,则2x﹣3=0,
    解得:x=,
    ∴E(,0),
    在x轴下方作∠BCF=∠BCE交BG于点F,
    ∵四边形OBGC是正方形,
    ∴OC=CG=BG=3,∠COE=∠G=90°,∠OCB=∠GCB=45°,
    ∴∠OCB﹣∠BCE=∠GCB﹣∠BCF,
    即∠OCE=∠GCF,
    ∴△OCE≌△GCF(ASA),
    ∴FG=OE=,
    ∴BF=BG﹣FG=3﹣=,
    ∴F(3,﹣),
    设直线CF解析式为y=k1x+e1,
    ∵C(0,﹣3),F(3,﹣),
    ∴,
    解得:,
    ∴直线CF解析式为y=x﹣3,
    结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=x﹣3,
    解得:x1=0(舍),x2=,
    ∴P2(,﹣),
    方法二:如图1′,连接CD,取BD的中点F,连接CF并延长交抛物线于点P,过点D作DT⊥y轴于点T,
    ∵B(3,0),C(0,﹣3),D(1,﹣4),
    ∴OB=OC=3,CT=DT=1,
    ∵∠BOC=∠CTD=90°,
    ∴△BOC和△CDT均为等腰直角三角形,
    ∴∠BCO=∠DCT=45°,
    ∴∠BCD=180°﹣45°﹣45°=90°,
    ∵点F是BC的中点,
    ∴CF=BF=DF,
    ∴∠PCB=∠CBD,
    ∵F(,),即F(2,﹣2),
    设直线CF的解析式为y=k2x+e2,则,
    解得:,
    ∴直线CF的解析式为y=x﹣3,
    由x2﹣2x﹣3=x﹣3,解得:x=0(舍去)或x=,
    ∴P(,﹣);
    综上所述,符合条件的P点坐标为:P1(4,5),P2(,﹣);
    (3)设直线AC解析式为y=m1x+n1,直线BC解析式为y=m2x+n2,
    ∵A(﹣1,0),C(0,﹣3),
    ∴,
    解得:,
    ∴直线AC解析式为y=﹣3x﹣3,
    ∵B(3,0),C(0,﹣3),
    ∴,
    解得:,
    ∴直线BC解析式为y=x﹣3,
    设M(t,t﹣3),则N(t,t2﹣2t﹣3),
    ∴MN=|t2﹣2t﹣3﹣(t﹣3)|=|t2﹣3t|,
    ①当△QMN是以NQ为斜边的等腰直角三角形时,此时∠NMQ=90°,MN=MQ,如图2,
    ∵MQ∥x轴,
    ∴Q(﹣t,t﹣3),
    ∴|t2﹣3t|=|t﹣(﹣t)|,
    ∴t2﹣3t=±t,
    解得:t=0(舍)或t=或t=,
    ∴M1(,﹣),Q1(﹣,﹣);M2(,),Q2(﹣,);
    ②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,
    ∵NQ∥x轴,
    ∴Q(,t2﹣2t﹣3),
    ∴NQ=|t﹣|=|t2+t|,
    ∴|t2﹣3t|=|t2+t|,
    解得:t=0(舍)或t=5或t=2,
    ∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);
    ③当△QMN是以MN为斜边的等腰直角三角形时,
    此时∠MQN=90°,MQ=NQ,如图4,
    过点Q作QH⊥MN于H,则MH=HN,
    ∴H(t,),
    ∴Q(,),
    ∴QH=|t﹣|=|t2+5t|,
    ∵MQ=NQ,
    ∴MN=2QH,
    ∴|t2﹣3t|=2×|t2+5t|,
    解得:t=7或1,
    ∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);
    综上所述,点M及其对应点Q的坐标为:
    M1(,),Q1(﹣,);M2(,﹣),Q2(﹣,﹣);M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).





    4.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.


    【答案】(1)y=﹣x2﹣2x+3;
    (2)最大值为,此时P(﹣,);
    (3)点P(﹣1,4),N(0,4)或P(,),N(,0)或P′(,),N′(,0).
    【解答】解:(1)∵抛物线的对称轴是直线x=﹣1,抛物线交x轴于点A,B(1,0),
    ∴A(﹣3,0),
    ∴OA=OC=3,
    ∴C(0,3),
    ∴可以假设抛物线的解析式为y=a(x+3)(x﹣1),
    把(0,3)代入抛物线的解析式,得a=﹣1,
    ∴抛物线的解析式为y=﹣x2﹣2x+3;

    (2)如图(2)中,连接OP.设P(m,﹣m2﹣2m+3),

    S=S△PAO+S△POC+S△OBC,
    =×3×(﹣m2﹣2m+3)+×3×(﹣m)+×1×3
    =(﹣m2﹣3m+4)
    =﹣(m+)2+,
    ∵﹣<0,
    ∴当m=﹣时,S的值最大,最大值为,此时P(﹣,);

    (3)存在,理由如下:
    如图3﹣1中,当点N在y轴上时,四边形PMCN是矩形,此时P(﹣1,4),N(0,4);

    如图3﹣2中,当四边形PMCN是矩形时,设M(﹣1,n),P(t,﹣t2﹣2t+3),则N(t+1,0),

    由题意,,
    消去n得,3t2+5t﹣10=0,
    解得t=,
    ∴P(,),N(,0)或P′(,),N′(,0).
    综上所述,满足条件的点P(﹣1,4),N(0,4)或P(,),N(,0)或P′(,),N′(,0).
    三.矩形的性质(共1小题)
    5.(2023•随州)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.
    (1)求证:四边形OCED是菱形;
    (2)若BC=3,DC=2,求四边形OCED的面积.

    【答案】(1)证明见解答;
    (2)3.
    【解答】(1)证明:∵DE∥AC,CE∥BD,
    ∴四边形OCED是平行四边形,
    ∵矩形ABCD的对角线AC,BD相交于点O,
    ∴AC=BD,OC=AC,OD=BD,
    ∴OC=OD,
    ∴四边形OCED是菱形;
    (2)解:∵四边形ABCD是矩形,BC=3,DC=2,
    ∴OA=OB=OC=OD,S矩形ABCD=3×2=6,
    ∴S△OCD=S矩形ABCD=×6=1.5,
    ∵四边形OCED是菱形,
    ∴菱形OCED的面积=2S△OCD=2×1.5=3.
    四.四边形综合题(共1小题)
    6.(2022•随州)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
    (1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)

    公式①:(a+b+c)d=ad+bd+cd
    公式②:(a+b)(c+d)=ac+ad+bc+bd
    公式③:(a﹣b)2=a2﹣2ab+b2
    公式④:(a+b)2=a2+2ab+b2
    图1对应公式  ① ,图2对应公式  ② ,图3对应公式  ④ ,图4对应公式  ③ .
    (2)《几何原本》中记载了一种利用几何图形证明平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
    (3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.
    ①若E为边AC的中点,则的值为  2 ;
    ②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.

    【答案】(1)①,②,④,③;
    (2)证明见解答观察;
    (3)①2;
    ②E不为边AC的中点时①中的结论仍成立,证明见解答过程.
    【解答】(1)解:观察图象可得:
    图1对应公式①,图2对应公式②,图3对应公式④,图4对应公式③;
    故答案为:①,②,④,③;
    (2)证明:
    如图:

    由图可知,矩形BCEF和矩形EGHL都是正方形,
    ∵AK=BM=BF﹣MF=a﹣b,BD=BC﹣CD=a﹣b,
    ∴S矩形AKLC=AK•AC=a(a﹣b)=BF•BD=S矩形DBFG,
    ∴S正方形BCEF=a2=S矩形CDHL+S矩形DBFG+S正方形EGHL=S矩形CDHL+S矩形AKLC+b2,
    ∴a2=S矩形AKHD+b2,
    ∵S矩形AKHD=AK•AD=(a﹣b)(a+b),
    ∴a2=(a﹣b)(a+b)+b2,
    ∴(a+b)(a﹣b)=a2﹣b2;
    (3)解:①设BD=m,
    由已知可得△ABD、△AEH、△CEG、△BFG是等腰直角三角形,四边形DGEH是矩形,
    ∴AD=BD=CD=m,
    ∵E是AC中点,
    ∴HE=DG=m=AH,
    ∴CG=CD﹣DG=m,BG=FG=BD+DG=m,
    ∴S1=S△BFG+S△CEG=×m×m+×m×m=m2,
    S2=S△ABD+S△AEH=m2+×m×m=m2,
    ∴=2;
    故答案为:2;
    ②E不为边AC的中点时①中的结论仍成立,证明如下:
    设BD=a,DG=b,
    由已知可得△ABD、△AEH、△CEG、△BFG是等腰直角三角形,四边形DGEH是矩形,
    ∴AD=BD=CD=a,AH=HE=DG=b,EG=CG=a﹣b,FG=BG=a+b,
    ∴S1=S△BFG+S△CEG=×(a+b)2+×(a﹣b)2=a2+b2,
    S2=S△ABD+S△AEH=a2+×b2=(a2+b2),
    ∴=2.
    五.切线的性质(共2小题)
    7.(2022•随州)如图,已知D为⊙O上一点,点C在直径BA的延长线上,BE与⊙O相切,交CD的延长线于点E,且BE=DE.
    (1)判断CD与⊙O的位置关系,并说明理由;
    (2)若AC=4,sinC=,
    ①求⊙O的半径;
    ②求BD的长.

    【答案】(1)证明见解析部分;
    (2)①2;
    ②.
    【解答】解:(1)结论:CD是⊙O的切线;
    理由:如图,连接OD.
    ∵EB=ED,OB=OD,
    ∴∠EBD=∠EDB,∠OBD=∠ODB,
    ∵BE是⊙O的切线,OB是半径,
    ∴OB⊥BE,
    ∴∠OBE=90°,
    ∴∠EBD+∠OBD=90°,
    ∴∠EDB+∠ODB=90°,
    ∴OD⊥DE,
    ∵OD是半径,
    ∴CD是⊙O的切线;

    (2)①设OD=OA=r,
    ∵OD⊥CD,
    ∴sinC==,
    ∴=,
    ∴r=2,
    ∴⊙O的半径为2;

    ②在Rt△COD中,CD===4,
    ∵AB是直径,
    ∴∠ADB=90°,
    ∴∠DBA+∠BAD=90°,
    ∵OD=OA,
    ∴∠OAD=∠ODA,
    ∵∠ADC+∠ODA=90°,
    ∴∠ADC=∠CBD,
    ∵∠C=∠C,
    ∴△CDA∽△CBD,
    ∴===,
    设AD=k,BD=2k,
    ∵AD2+BD2=AB2,
    ∴(k)2+(2k)2=42,
    ∴k=(负根已经舍去),
    ∴BD=2k=.

    8.(2021•随州)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
    (1)求证:AB=BC;
    (2)若⊙O的直径AB为9,sinA=.
    ①求线段BF的长;
    ②求线段BE的长.

    【答案】(1)证明见解析;
    (2)①1;②.
    【解答】解:(1)证明:连接OD,如图1,

    ∵DE是⊙O的切线,
    ∴OD⊥DE.
    ∵BC⊥DE,
    ∴OD∥BC.
    ∴∠ODA=∠C.
    ∵OA=OD,
    ∴∠ODA=∠A.
    ∴∠A=∠C.
    ∴AB=BC.
    (2)①连接BD,则∠ADB=90°,如图2,

    在Rt△ABD中,
    ∵sinA=,AB=9,
    ∴BD=3.
    ∵OB=OD,
    ∴∠ODB=∠OBD.
    ∵∠OBD+∠A=∠FDB+∠ODB=90°,
    ∴∠A=∠FDB.
    ∴sin∠A=sin∠FDB.
    在Rt△BDF中,
    ∵sin∠BDF==,
    ∴BF=1.
    ②由(1)知:OD∥BF,
    ∴△EBF∽△EOD.
    ∴.
    即:.
    解得:BE=.
    六.切线的判定与性质(共1小题)
    9.(2023•随州)如图,AB是⊙O的直径,点E,C在⊙O上,点C是的中点,AE垂直于过C点的直线DC,垂足为D,AB的延长线交直线DC于点F.
    (1)求证:DC是⊙O的切线;
    (2)若AE=2,sin∠AFD=,
    ①求⊙O的半径;
    ②求线段DE的长.

    【答案】(1)证明过程见解答;
    (2)①⊙O的半径为3;
    ②线段DE的长为2.
    【解答】(1)证明:连接OC,

    ∵AD⊥DF,
    ∴∠D=90°,
    ∵点C是的中点,
    ∴=,
    ∴∠DAC=∠CAB,
    ∴OA=OC,
    ∴∠CAB=∠OCA,
    ∴∠DAC=∠OCA,
    ∴AD∥OC,
    ∴∠OCF=∠D=90°,
    ∵OC是⊙O的半径,
    ∴DC是⊙O的切线;
    (2)解:①过点O作OG⊥AE,垂足为G,

    ∴AG=EG=AE=1,
    ∵OG⊥AD,
    ∴∠AGO=∠DGO=90°,
    ∵∠D=∠AGO=90°,
    ∴OG∥DF,
    ∴∠AFD=∠AOG,
    ∵sin∠AFD=,
    ∴sin∠AOG=sin∠AFD=,
    在Rt△AGO中,AO===3,
    ∴⊙O的半径为3;
    ②∵∠OCF=90°,
    ∴∠OCD=180°﹣∠OCF=90°,
    ∵∠OGE=∠D=90°,
    ∴四边形OGDC是矩形,
    ∴OC=DG=3,
    ∵GE=1,
    ∴DE=DG﹣GE=3﹣1=2,
    ∴线段DE的长为2.
    七.圆的综合题(共1小题)
    10.(2021•随州)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.
    (1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为   ,其内切圆的半径长为  1 ;
    (2)①如图1,P是边长为a的正△ABC内任意一点,点O为△ABC的中心,设点P到△ABC各边距离分别为h1,h2,h3,连接AP,BP,CP,由等面积法,易知a(h1+h2+h3)=S△ABC=3S△OAB,可得h1+h2+h3=  ;(结果用含a的式子表示)

    ②如图2,P是边长为a的正五边形ABCDE内任意一点,设点P到五边形ABCDE各边距离分别为h1,h2,h3,h4,h5,参照①的探索过程,试用含a的式子表示h1+h2+h3+h4+h5的值.(参考数据:tan36°≈,tan54°≈)
    (3)①如图3,已知⊙O的半径为2,点A为⊙O外一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积为   ;(结果保留π)
    ②如图4,现有六边形花坛ABCDEF,由于修路等原因需将花坛进行改造,若要将花坛形状改造成五边形ABCDG,其中点G在AF的延长线上,且要保证改造前后花坛的面积不变,试确定点G的位置,并说明理由
    【答案】(1),1;
    (2)①,②;
    (3)①,②见解析.
    【解答】解:(1)如图所示,AC=3,BC=4,∠ACB=90°,
    ∴AB==5,设斜边上高为h,由等面积法可知:
    AC•BC=h•AB,
    =.
    设其内切圆半径为r,利用分割图形后各部分的面积之和等于原图形的面积可得:
    S△ABC=S△ACO+S△BCO+S△ABO.
    即3×4÷2=AC•r+BC•r+AB•r,
    即=6,
    ∴r===1.
    故答案为:,1;
    (2)①:由已知中图可知,△ABC的面积为=,
    由等面积法,易知a(h1+h2+h3)=S△ABC=,
    解得:h1+h2+h3=.
    故答案为:.
    ②:类比①中方法可知(h1+h2+h3+h4+h5)=S五边形ABCDE,
    设点O为正五边形ABCDE的中心,连接OA,OB,如图2.
    易知S五边形ABCDE=5S△OAB,
    过O作OQ⊥AB于点Q,∠EAB==108°,
    故∠OAQ=54°,OQ=AQ•tan54°=,
    故(h1+h2+h3+h4+h5)=5××,从而得到:
    h1+h2+h3+h4+h5=tan54°≈.
    (3)①:若以BC作为△OCB和△ACB的底,则△OCB和△ACB等高,
    ∴S△OCB=S△ACB.
    ∴图中阴影部分的面积即为扇形OCB的面积.
    ∵AB切⊙O于点B,
    ∴∠OBA=90°,
    又OB=2,OA=4,
    ∴∠OAB=30°,∠AOB=60°,
    ∵BC∥OA,
    ∴∠OBC=∠AOB=60°,
    ∴△OCB为等边三角形.
    ∴∠COB=60°,
    ∴S扇形OCB==.
    故阴影部分面积为.
    故答案为:.
    ②如图3,连接DF,过点E作EG∥DF交AF的延长线于点G,则点G即为所求.
    连接DG,
    ∵S六边形ABCDEF=S五边形ABCDF+S△DEF,
    ∵EG∥DF,
    ∴S△DEF=S△DGF,
    ∴S六边形ABCDEF=S五边形ABCDF+S△DGF=S五边形ABCDG.



    八.几何变换综合题(共1小题)
    11.(2023•随州)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
    (1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
    当△ABC的三个内角均小于120°时,
    如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,
    由PC=P′C,∠PCP′=60°,可知△PCP′为  等边 三角形,故PP′=PC,又P′A′=PA,故PA+PB+PC=P′A′+PB+PP′≥A′B,
    由  两点之间线段最短 可知,当B,P,P′,A′在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,
    且有∠APC=∠BPC=∠APB= 120° ;
    已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为  A 点.
    (2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;

    (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=2km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,a元/km,选取合适的P的位置,可以使总的铺设成本最低为   元.(结果用含a的式子表示)
    【答案】(1)等边;两点之间线段最短;120°;A;
    (2)5;
    (3)a.
    【解答】解:(1)∵PC=P'C,∠PCP'=60°,
    ∴△PCP'为等边三角形,
    ∴PP'=PC,∠P'PC=∠PP'C=60°,
    又∵P'A'=PA,
    ∴PA+PB+PC=PA'+PB+PP'≥A'B,
    根据两点之间线段最短可知,当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,
    此时的P点为该三角形的“费马点”,
    ∴∠BPC+∠P'PC=180°,∠A'P'C+∠PP'C=180°,
    ∴∠BPC=120°,∠A'P'C=120°,
    ∵将△APC绕点C顺时针旋转60°得到△A′P′C,
    ∴△APC≌△A'P'C,
    ∴∠APC=∠AP'C'=120°,
    ∴∠APB=360°﹣120°﹣120°=120°,
    ∴∠APC=∠BPC=∠APB=120°,
    ∵∠BAC≥120°,
    ∴BC>AC,BC>AB,
    ∴BC+AB>AC+AB,BC+AC>AB+AC,
    ∴三个顶点中顶点A到另外两个顶点的距离和最小,
    又∵已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点,
    ∴该三角形的“费马点”为点A.
    故答案为:等边;两点之间线段最短;120°;A;
    (2)如图4,将△APC绕点C顺时针旋转60°得到△A'P'C,连接PP',

    由(1)可知当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,
    ∵∠ACP=∠A'CP',
    ∴∠ACP+∠BCP=∠A'CP'+∠BCP=∠ACB=30°,
    又∵∠PCP'=60°,
    ∴∠BCA'=90°,
    根据旋转的性质可知:AC=A'C=3,
    ∴A'B=,
    即PA+PB+PC的最小值为5;
    (3)∵总铺设成本=PA×a+PB×a+PC×a=,
    ∴当PA+PB+PC最小时,总铺设成本最低,
    将△APC绕点C顺时针旋转90°得到△A'P'C,连接PP',A'B,

    由旋转性质可知:P'C=PC,∠PCP'=∠ACA'=90°,P'A'=PA,A'C=AC=4km,
    ∴PP'=PC,
    ∴PA+PB+PC=P'A'+PB+PP',
    当B、P、P'、A在同一条直线上时,P'A'+PB+PP'取最小值,
    即PA+PB+PC取最小值为A'B,
    过点A'作A'H⊥BC于H,
    ∵∠ACB=60°,∠ACA'=90°,
    ∴∠A'CH=30°,
    ∴A'H=A'C=2km,
    ∴HC==(km),
    ∴BH=BC+CH=(km),
    ∴A'B=(km),
    即PA+PB+PC的最小值为km,
    总铺设成本为:总铺设成本==a(元).
    故答案为:a.
    九.解直角三角形的应用-仰角俯角问题(共1小题)
    12.(2023•随州)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)
    (1)求点D到地面BC的距离;
    (2)求该建筑物的高度AB.

    【答案】(1)点D到地面BC的距离为5m.
    (2)居民楼的高度AB为15m.
    【解答】解:(1)过点D作DE⊥BC,交BC的延长线于点E,
    ∵cosα=,
    解得CE=5,
    ∴DE==5(m).
    ∴点D到地面BC的距离为5m.
    (2)过点D作DF⊥AB于点F,
    则BF=DE=5m,
    设BC=xm,则BE=DF=(5+x)m,
    在Rt△ABC中,tan60°=,
    解得AB=x,
    ∴AF=(x﹣5)m,
    在Rt△ADF中,tan30°===,
    解得x=5,
    经检验,x=5是原方程的解且符合题意,
    ∴AB==15(m).
    ∴居民楼的高度AB为15m.

    一十.列表法与树状图法(共1小题)
    13.(2021•随州)疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:

    已接种
    未接种
    合计
    七年级
    30
    10
    40
    八年级
    35
    15
    a
    九年级
    40
    b
    60
    合计
    105
    c
    150
    (1)表中,a= 50 ,b= 20 ,c= 45 ;
    (2)由表中数据可知,统计的教师中接种率最高的是  七 年级教师;(填“七”或“八”或“九”)
    (3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有  2400 人;
    (4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感受,请用列表或画树状图的方法,求选中的两名教师恰好不在同一年级的概率.
    【答案】(1)50,20,45;
    (2)七;
    (3)2400;
    (4).
    【解答】解:(1)a=35+15=50,b=60﹣40=20,c=10+15+20=45,
    故答案为:50,20,45;
    (2)七年级教师的接种率为:30÷40×100%=75%,八年级教师的接种率为:35÷50×100%=70%,九年级教师的接种率为:40÷60×100%≈67%,
    ∵75%>70%>67%,
    ∴统计的教师中接种率最高的是七年级教师,
    故答案为:七;
    (3)根据抽样结果估计未接种的教师约有:8000×=2400(人),
    故答案为:2400;
    (4)把七年级1名教师记为A,八年级1名教师记为B,九年级2名教师记为C、D,
    画树状图如图:

    共有12种等可能的结果,选中的两名教师恰好不在同一年级的结果有10种,
    ∴选中的两名教师恰好不在同一年级的概率为=.

    相关试卷

    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map