湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
展开湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.根的判别式(共1小题)
1.(2022•十堰)已知关于x的一元二次方程x2﹣2x﹣3m2=0.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.
二.一次函数的应用(共1小题)
2.(2022•十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.
(1)第15天的日销售量为 件;
(2)0<x≤30时,求日销售额的最大值;
(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?
三.反比例函数与一次函数的交点问题(共1小题)
3.(2023•十堰)函数y=的图象可以由函数y=的图象左右平移得到.
(1)将函数y=的图象向右平移4个单位得到函数y=的图象,则a= ;
(2)下列关于函数y=的性质:①图象关于点(﹣a,0)对称;②y随x的增大而减小;③图象关于直线y=﹣x+a对称;④y的取值范围为y≠0.其中说法正确的是 (填写序号);
(3)根据(1)中a的值,写出不等式>的解集.
四.二次函数的应用(共2小题)
4.(2023•十堰)“端午节”吃粽子是中国传统习俗,在“端午节”来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒.根据以往销售经验发现,当每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒.设每盒售价为x元,日销售量为p盒.
(1)当x=60时,p= ;
(2)当每盒售价定为多少元时,日销售利润W(元)最大?最大利润是多少?
(3)小强说:“当日销售利润最大时,日销售额不是最大.”小红说:“当日销售利润不低于8000元时,每盒售价x的范围为60≤x≤80.”你认为他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确的结论.
5.(2021•十堰)某商贸公司购进某种商品的成本为20元/kg,经过市场调研发现,这种商品在未来40天的销售单价y(元/kg)与时间x(天)之间的函数关系式为:y=,且日销量m(kg)与时间x(天)之间的变化规律符合一次函数关系,如下表:
时间x(天)
1
3
6
10
…
日销量m(kg)
142
138
132
124
…
(1)填空:m与x的函数关系为 ;
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(n<4)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.
五.二次函数综合题(共3小题)
6.(2023•十堰)已知抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),与y轴交于点A.
(1)求抛物线的解析式;
(2)如图1,连接AB,BC,点D在线段AB上(与点A,B不重合),点F是OA的中点,连接FD,过点D作DE⊥FD交BC于点E,连接EF,当△DEF面积是△ADF面积的3倍时,求点D的坐标;
(3)如图2,点P是抛物线上对称轴右侧的点,H(m,0)是x轴正半轴上的动点,若线段OB上存在点G(与点O,B不重合),使得∠GBP=∠HGP=∠BOH,求m的取值范围.
7.(2021•十堰)已知抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.
(1)求抛物线的解析式;
(2)如图1,当tan∠ACM=2时,求M点的横坐标;
(3)如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=MN,求N点的坐标.
8.(2022•十堰)已知抛物线y=ax2+x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.
①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;
②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.
六.矩形的判定(共1小题)
9.(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.
(1)求证:BE=DF;
(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.
七.四边形综合题(共1小题)
10.(2023•十堰)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.
(1)如图1,若∠CDP=25°,则∠DAF= ;
(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;
(3)在DP绕点D转动的过程中,设AF=a,EF=b,请直接用含a,b的式子表示DF的长.
八.切线的判定与性质(共1小题)
11.(2023•十堰)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,以O为圆心,OA为半径的半圆分别交AC,BC,AB于点D,E,F,且点E是弧DF的中点.
(1)求证:BC是⊙O的切线;
(2)若CE=,求图中阴影部分的面积(结果保留π).
九.几何变换综合题(共1小题)
12.(2021•十堰)已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.
(1)如图1,直接写出线段AP与BQ的数量关系;
(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;
(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于,求线段AP的长度.
一十.条形统计图(共1小题)
13.(2023•十堰)市体育局对甲、乙两运动队的某体育项目进行测试,两队人数相等,测试后统计队员的成绩分别为:7分、8分、9分、10分(满分为10分).依据测试成绩绘制了如图所示尚不完整的统计图表:
成绩
7分
8分
9分
10分
人数
10
1
m
7
请根据图表信息解答下列问题:
(1)填空:α= °,m= ;
(2)补齐乙队成绩条形统计图;
(3)①甲队成绩的中位数为 ,乙队成绩的中位数为 ;
②分别计算甲、乙两队成绩的平均数,并从中位数和平均数的角度分析哪个运动队的成绩较好.
一十一.列表法与树状图法(共1小题)
14.(2022•十堰)某兴趣小组针对视力情况随机抽取本校部分学生进行调查,将调查结果进行统计分析,绘制成如下不完整的统计图表.
抽取的学生视力情况统计表
类别
调查结果
人数
A
正常
48
B
轻度近视
76
C
中度近视
60
D
重度近视
m
请根据图表信息解答下列问题:
(1)填空:m= ,n= ;
(2)该校共有学生1600人,请估算该校学生中“中度近视”的人数;
(3)某班有四名重度近视的学生甲、乙、丙、丁,从中随机选择两名学生参加学校组织的“爱眼护眼”座谈会,请用列表或画树状图的方法求同时选中甲和乙的概率.
湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.根的判别式(共1小题)
1.(2022•十堰)已知关于x的一元二次方程x2﹣2x﹣3m2=0.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.
【答案】(1)证明过程见解答;
(2)m的值为±1.
【解答】(1)证明:∵a=1,b=﹣2,c=﹣3m2,
∴Δ=(﹣2)2﹣4×1•(﹣3m2)
=4+12m2>0,
∴方程总有两个不相等的实数根;
(2)解:由题意得:
,
解得:,
∵αβ=﹣3m2,
∴﹣3m2=﹣3,
∴m=±1,
∴m的值为±1.
二.一次函数的应用(共1小题)
2.(2022•十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.
(1)第15天的日销售量为 30 件;
(2)0<x≤30时,求日销售额的最大值;
(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?
【答案】(1)30;(2)2100元;(3)9天.
【解答】解:(1)∵日销售量y(件)与销售时间x(天)之间的关系式是y=,
∴第15天的销售量为2×15=30件,
故答案为:30;
(2)由销售单价p(元/件)与销售时间x(天)之间的函数图象得:
p=,
①当0<x≤20时,
日销售额=40×2x=80x,
∵80>0,
∴日销售额随x的增大而增大,
∴当x=20时,日销售额最大,最大值为80×20=1600(元);
②当20<x≤30时,
日销售额=(50﹣x)×2x=﹣x2+100x=﹣(x﹣50)2+2500,
∵﹣1<0,
∴当x<50时,日销售额随x的增大而增大,
∴当x=30时,日销售额最大,最大值为2100(元),
综上,当0<x≤30时,日销售额的最大值为2100元;
(3)由题意得:
当0<x≤30时,2x≥48,
解得:24≤x≤30,
当30<x≤40时,﹣6x+240≥48,
解得:30<x≤32,
∴当24≤x≤32时,日销售量不低于48件,
∵x为整数,
∴x的整数值有9个,
∴“火热销售期”共有9天.
三.反比例函数与一次函数的交点问题(共1小题)
3.(2023•十堰)函数y=的图象可以由函数y=的图象左右平移得到.
(1)将函数y=的图象向右平移4个单位得到函数y=的图象,则a= ﹣4 ;
(2)下列关于函数y=的性质:①图象关于点(﹣a,0)对称;②y随x的增大而减小;③图象关于直线y=﹣x+a对称;④y的取值范围为y≠0.其中说法正确的是 ①④ (填写序号);
(3)根据(1)中a的值,写出不等式>的解集.
【答案】(1)﹣4;
(2)①④;
(3)x>4或x<0.
【解答】解:(1)将函数y=的图象向右平移4个单位得到函数y=的图象,则a=﹣4;
故答案为:﹣4;
(2)函数y=向左平移a个单位得到函数y=的图象,
①图象关于点(﹣a,0)对称,正确;
②y随x的增大而减小,错误;
③图象关于直线y=﹣x+a对称,错误;
④y的取值范围为y≠0,正确.
其中说法正确的是①④;
故答案为:①④;
(3)观察图象,不等式>的解集为x>4或x<0.
四.二次函数的应用(共2小题)
4.(2023•十堰)“端午节”吃粽子是中国传统习俗,在“端午节”来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒.根据以往销售经验发现,当每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒.设每盒售价为x元,日销售量为p盒.
(1)当x=60时,p= 400 ;
(2)当每盒售价定为多少元时,日销售利润W(元)最大?最大利润是多少?
(3)小强说:“当日销售利润最大时,日销售额不是最大.”小红说:“当日销售利润不低于8000元时,每盒售价x的范围为60≤x≤80.”你认为他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确的结论.
【答案】(1)400;
(2)当每盒售价定为65元时,每天销售的利润W(元)最大,最大利润是8750元;
(3)小强正确,理由见解答;小红错误,当日销售利润不低于8000元时,60≤x≤65.
【解答】解:(1)由题意可得,
p=500﹣10(x﹣50)=﹣10x+1000,
即每天的销售量p(盒)与每盒售价x(元)之间的函数关系式是p=﹣10x+1000,
当x=60时,p=﹣10×60+1000=400,(x≥50),
故答案为:400.
(2)由题意可得,
W=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,
由题可知:每盒售价不得少于50元,日销售量不低于350盒,
∴,
即,解得50≤x≤65.
∴当x=65时,W取得最大值,此时W=8750,
答:当每盒售价定为65元时,每天销售的利润W(元)最大,最大利润是8750元;
(3)小强:∵50≤x≤65,
设日销售额为y元,
y=x•p=x(﹣10x+1000)=﹣10x²+1000x=﹣10(x﹣50)²+25000,
当x=50时,y值最大,此时y=25000,
当x=65时,W值最大,此时W=8750,
∴小强正确.
小红:当日销售利润不低于8000元时,
即W≥8000,
﹣10(x﹣70)2+9000≥8000,解得:60≤x≤80,
∵50≤x≤65,
∴当日销售利润不低于8000元时,60≤x≤65.
故小红错误,当日销售利润不低于8000元时,60≤x≤65.
5.(2021•十堰)某商贸公司购进某种商品的成本为20元/kg,经过市场调研发现,这种商品在未来40天的销售单价y(元/kg)与时间x(天)之间的函数关系式为:y=,且日销量m(kg)与时间x(天)之间的变化规律符合一次函数关系,如下表:
时间x(天)
1
3
6
10
…
日销量m(kg)
142
138
132
124
…
(1)填空:m与x的函数关系为 m=﹣2x+144(1≤x≤40且x为整数) ;
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(n<4)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.
【答案】(1)m=﹣2x+144(1≤x≤40且x为整数);
(2)第16天的销售利润最大,最大日销售利润为1568元;
(3)1.75<n<4.
【解答】解:(1)由题意可设日销量m(kg)与时间x(天)之间的一次函数关系式为:m=kx+b(k≠0),
将(1,142)和(3,138)代入m=kx+b,有:,
解得k=﹣2,b=144,
故m与x的函数关系为:m=﹣2x+144(1≤x≤40且x为整数);
(2)设日销售利润为W元,根据题意可得:
当1≤x≤20且x为整数时,W=(0.25x+30﹣20)(﹣2x+144)=﹣0.5x2+16x+1440=﹣0.5(x﹣16)2+1568,
此时当x=16时,取得最大日销售利润为1568元,
当20<x≤40且x为整数时,W=(35﹣20)(﹣2x+144)=﹣30x+2160,
此时当x=21时,取得最大日销售利润W=﹣30×21+2160=1530(元),
综上所述,第16天的销售利润最大,最大日销售利润为1568元;
(3)设每天扣除捐赠后的日销售利润为P,根据题意可得:
P=﹣0.5x2+16x+1440﹣n(﹣2x+144)=﹣0.5x2+(16+2n)x+1440﹣144n,其对称轴为直线x=16+2n,
∵在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,且x只能取整数,故只要第20天的利润高于第19天,即对称轴要大于19.5
∴16+2n>19.5,求得n>1.75,
又∵n<4,
∴n的取值范围是:1.75<n<4,
答:n的取值范围是1.75<n<4.
五.二次函数综合题(共3小题)
6.(2023•十堰)已知抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),与y轴交于点A.
(1)求抛物线的解析式;
(2)如图1,连接AB,BC,点D在线段AB上(与点A,B不重合),点F是OA的中点,连接FD,过点D作DE⊥FD交BC于点E,连接EF,当△DEF面积是△ADF面积的3倍时,求点D的坐标;
(3)如图2,点P是抛物线上对称轴右侧的点,H(m,0)是x轴正半轴上的动点,若线段OB上存在点G(与点O,B不重合),使得∠GBP=∠HGP=∠BOH,求m的取值范围.
【答案】(1)y=﹣x2+x+8;
(2)D(6﹣2,0);
(3)0<m≤.
【解答】解:(1)∵抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),
∴,
解得:,
∴抛物线的解析式为y=﹣x2+x+8;
(2)∵抛物线y=﹣x2+x+8与y轴交于点A,
当x=0时,y=8,
∴A(0,8),则OA=8,
∵B(4,8),
∴AB∥x轴,AB=4,
∵点F是OA的中点,
∴F(0,4),
∴AB=AF=4,
设直线BC的解析式为y=kx+b,
∵B(4,8),C(8,4),
∴,
解得:,
∴直线BC的解析式为y=﹣x+12,
设E(m,﹣m+12)(4<m<8),
如图1,过点E作EG⊥AB交AB的延长线于G,
则∠G=90°,
∴G(m,8),
∴GE=8﹣(﹣m+12)=m﹣4,BG=m﹣4,
∴BG=GE,
∴△BGE是等腰直角三角形,
设D(t,8),则AD=t,DG=m﹣t,
∵DE⊥FD,
∴∠FDE=90°,
∵∠FAD=∠G=∠FDE=90°,
∴∠AFD=90°﹣∠ADF=∠GDE,
∴△AFD∽△GDE,
∴=,即=,
∴t(m﹣t)=4(m﹣4),
即(t﹣4)m=(t﹣4)(t+4),
∵m>4,
∴m=t+4,
即m﹣t=4,
∴DG=AF,
∴△AFD≌△GDE(ASA),
∴DF=DE,
又∵DE⊥DF,
∴△DEF是等腰直角三角形,
∴S△DEF=DF2,
∵S△ADF=AD•AF,
当△DEF面积是△ADF面积的3倍时,
即DF2=3×AD•AF,
∴DF2=12AD,
在Rt△ADF中,DF2=AD2+AF2=t2+42,
∴AD2+AF2=12AD,
∴t2+42=12t,
解得:t=6﹣2或t=2+6(舍去),
∴D(6﹣2,0);
(3)∵∠GBP=∠HGP=∠BOH,
又∠OGH+∠HGP=∠GBP+∠BPG,
∴∠OGH=∠BPG,
∴△OGH∽△BPG,
∴=,
设BP交x轴于点S,过点B作BT⊥x轴于点T,如图2,
∵∠GBP=∠BOH,
∴SB=SO,
∵OT=4,BT=8,
∴OB==4,
设BS=k,则TS=k﹣4,
在Rt△TBS中,SB2=ST2+BT2,
∴k2=(k﹣4)2+82,
解得:k=10,
∴S(10,0),
设直线BS的解析式为y=ex+f,则,
解得:,
∴直线BS的解析式为y=﹣x+,
联立,
解得:或,
∴P(,﹣),
∴PB==,
∵=,
设OG=n,则BG=OB﹣OG=4﹣n,
∴=,
整理得:m=﹣=﹣n2+n=﹣(n﹣2)2+,
∵点G在线段OB上(与点O,B不重合),
∴0<OG<4,
∴0<n<4,
∴当n=2时,m取得的最大值为,
∴0<m≤.
7.(2021•十堰)已知抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.
(1)求抛物线的解析式;
(2)如图1,当tan∠ACM=2时,求M点的横坐标;
(3)如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=MN,求N点的坐标.
【答案】(1)y=﹣x2﹣6x﹣5;
(2)点M的横坐标为﹣;
(3)N(﹣3,﹣﹣2).
【解答】解:(1)∵抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),
∴,
解得:,
∴该抛物线的解析式为:y=﹣x2﹣6x﹣5;
(2)在y=﹣x2﹣6x﹣5中,令x=0,则y=﹣5,
∴C(0,﹣5),
∴OC=5,
如图1,过点A作AF⊥AC交直线CM于点F,过点F作FE⊥x轴于点E,
∴∠AEF=∠CAF=∠AOC=90°,
∴∠EAF+∠CAO=∠CAO+∠ACO=90°,
∴∠EAF=∠ACO,
∴△AEF∽△COA,
∴===tan∠ACM=2,
∴EF=2OA=2,AE=2OC=10,
∴OE=OA+AE=1+10=11,
∴F(﹣11,﹣2),
设直线CF解析式为y=kx+c,
∵C(0,﹣5),F(﹣11,﹣2),
∴,
解得:,
∴直线CF解析式为y=﹣x﹣5,
结合抛物线:y=﹣x2﹣6x﹣5,得:﹣x2﹣6x﹣5=﹣x﹣5,
解得:x1=0(舍),x2=﹣,
∴点M的横坐标为﹣;
(3)∵y=﹣x2﹣6x﹣5=﹣(x+3)2+4,
∴顶点P(﹣3,4),
设N(﹣3,n),直线AN解析式为y=k1x+c1,
∵A(﹣1,0),N(﹣3,n),
∴,
解得:,
∴直线AN解析式为y=nxn,
结合抛物线y=﹣x2﹣6x﹣5,得:﹣x2﹣6x﹣5=nxn,
解得:x1=﹣1(舍),x2=n﹣5,
当x=n﹣5时,y=n×(n﹣5)n=﹣n2+2n,
∴M(n﹣5,﹣n2+2n),
∵PD∥x轴,MD⊥PD,
∴D(n﹣5,4),
∴MD=4﹣(﹣n2+2n)=n2﹣2n+4,
如图2,过点M作MG⊥PN于点G,
则MG=﹣3﹣(n﹣5)=2﹣n,NG=n﹣(﹣n2+2n)=n2﹣n,
∵∠MGN=90°,
∴MN2=MG2+NG2=(2﹣n)2+(n2﹣n)2=(n2+4)(n﹣4)2,
∵MD=MN,
∴MD2=3MN2,
∴(n2﹣2n+4)2=3×(n2+4)(n﹣4)2,
∴(n﹣4)4=(n2+4)(n﹣4)2,
∵点N在抛物线对称轴上且位于x轴下方,
∴n<0,
∴n﹣4<0,
∴(n﹣4)2>0,
∴(n﹣4)2=3(n2+4),
解得:n1=﹣2(舍),n2=﹣﹣2,
∴N(﹣3,﹣﹣2).
8.(2022•十堰)已知抛物线y=ax2+x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.
①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;
②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.
【答案】(1)y=x2+x﹣3;
(2)①P(﹣,﹣);
②四边形PECE′的周长为:或.
【解答】解:(1)由题意得,
,
∴,
∴y=x2+x﹣3;
(2)①如图1,
设直线PC交x轴于E,
∵PD∥OC,
∴∠OCE=∠CPD=45°,
∵∠COE=90°,
∴∠CEO=90°﹣∠ECO=45°,
∴∠CEO=∠OCE,
∴OE=OC=3,
∴点E(3,0),
∴直线PC的解析式为:y=x﹣3,
由x2+x﹣3=x﹣3得,
∴x1=﹣,x2=0(舍去),
当x=﹣时,y=﹣﹣3=﹣,
∴P(﹣,﹣);
②如图2,
设点P(m,m2+m﹣3),四边形PECE′的周长记作l,
点P在第三象限时,作EF⊥y轴于F,
∵点E与E′关于PC对称,
∴∠ECP=∠E′PC,CE=CE′,
∵PE∥y轴,
∴∠EPC=∠PCE′,
∴∠ECP=∠EPC,
∴PE=CE,
∴PE=CE′,
∴四边形PECE′为平行四边形,
∴▱PECE′为菱形,
∴CE=PE,
∵EF∥OA,
∴,
∴,
∴CE=﹣m,
∵PE=﹣(﹣)﹣(+﹣3)=﹣﹣3m,
∴﹣=﹣m2﹣3m,
∴m1=0(舍去),m2=﹣,
∴CE=,
∴l=4CE=4×=,
当点P在第二象限时,
同理可得:
﹣m=+3m,
∴m3=0(舍去),m4=﹣,
∴l=4×=,
综上所述:四边形PECE′的周长为:或.
六.矩形的判定(共1小题)
9.(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.
(1)求证:BE=DF;
(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.
【答案】2.
【解答】(1)证明:如图,连接DE,BF,
∵四边形ABCD是平行四边形,
∴BO=OD,AO=OC,
∵E,F分别为AO,OC的中点,
∴EO=OA,OF=OC,
∴EO=FO,
∵BO=OD,EO=FO,
∴四边形BFDE是平行四边形,
∴BE=DF;
(2)解:当k=2时,四边形DEBF是矩形;理由如下:
当BD=EF时,四边形DEBF是矩形,
∴当OD=OE时,四边形DEBF是矩形,
∵AE=OE,
∴AC=2BD,
∴当k=2时,四边形DEBF是矩形.
七.四边形综合题(共1小题)
10.(2023•十堰)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.
(1)如图1,若∠CDP=25°,则∠DAF= 20° ;
(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;
(3)在DP绕点D转动的过程中,设AF=a,EF=b,请直接用含a,b的式子表示DF的长.
【答案】(1)20°;
(2);
(3)或 或 .
【解答】解:(1)如图,连接CE,DE,
∵点C关于直线DP的对称点为点E,
∴CD,ED关于DP对称,∠CDP=∠EDP=25°,CD=ED,
∵四边形ABCD是正方形,
∴AD=CD,
∴AD=ED,
∴.
故答案为:20°;
(2)结论:.
理由:如图,连接DE,CE,AC,CF.
由轴对称知,CF=EF,CD=DE=AD,∠DEF=∠DCF,
而∠DEF=∠DAF,
∴∠DAF=∠DCF.
∵∠FAC+∠FCA=∠FAC+∠DAF+∠DCA=90°,
∴∠AFC=180°﹣(∠FAC+∠FCA)=90°,
在Rt△ACF中,AC2=AF2+CF2=AF2+EF2,
在Rt△ACD中,AD2+CD2=AC2,
2CD2=AF2+EF2,即;
(3)∵∠AFC=90°,CF=EF=b,
∴,
∵,
∴.
如图,当点F在D,H之间时,,
如图,当点D在F,H之间时,,
如图,当点H在F,D之间时,.
八.切线的判定与性质(共1小题)
11.(2023•十堰)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,以O为圆心,OA为半径的半圆分别交AC,BC,AB于点D,E,F,且点E是弧DF的中点.
(1)求证:BC是⊙O的切线;
(2)若CE=,求图中阴影部分的面积(结果保留π).
【答案】(1)见解答.
(2)2﹣.
【解答】(1)证明:连接OE、OD,如图:
∵∠C=90°,AC=BC,
∴∠OAD=∠B=45°,
∵OA=OD,
∴∠OAD=∠ADO=45°,
∴∠AOD=90°,
∵点E是弧DF的中点.
∴∠DOE=∠EDF=∠DOF=45°,
∴∠OEB=180°﹣∠EOF﹣∠B=90°
∴OE⊥BC,
∵OE是半径,
∴BC是⊙O的切线,
(2)解:∵OE⊥BC,∠B=45°,
∴△OEB是等腰三角形,
设BE=OE=x,则OB=x,
∴AB=xx,
∵AB=BC,
∴xx=(+x),
解得x=2,
∴S阴影=S△OEB﹣S扇形OEF=×2×2﹣=2﹣.
九.几何变换综合题(共1小题)
12.(2021•十堰)已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.
(1)如图1,直接写出线段AP与BQ的数量关系;
(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;
(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于,求线段AP的长度.
【答案】(1)AP=BQ;
(2)证明略;
(3)AP的长为:或或.
【解答】解:(1)在等边△ABC中,AC=BC,∠ACB=60°,
由旋转可得,CP=CQ,∠PCQ=60°,
∴∠ACB=∠PCQ,
∴∠ACB﹣∠PCB=∠PCQ﹣∠PCB,即∠ACP=∠BCQ,
∴△ACP≌△BCQ(SAS),
∴AP=BQ.
(2)在等边△ABC中,AC=BC,∠ACB=60°,
由旋转可得,CP=CQ,∠PCQ=60°,
∴∠ACB=∠PCQ,
∴∠ACB﹣∠PCB=∠PCQ﹣∠PCB,即∠ACP=∠BCQ,
∴△ACP≌△BCQ(SAS),
∴AP=BQ,∠CBQ=∠CAP=90°;
∴BQ=AP=AC=BC,
∵AP=AC,∠CAP=90°,
∴∠BAP=30°,∠ABP=∠APB=75°,
∴∠CBP=∠ABC+∠ABP=135°,
∴∠CBD=45°,
∴∠QBD=45°,
∴∠CBD=∠QBD,即BD平分∠CBQ,
∴BD⊥CQ且点D是CQ的中点,即直线PB垂直平分线段CQ.
(3)①当点Q在直线l上方时,如图所示,延长BQ交l于点E,过点Q作QF⊥l于点F,
由题意可得AC=BC,PC=CQ,∠PCQ=∠ACB=60°,
∴∠ACP=∠BCQ,
∴△APC≌△BCQ(SAS),
∴AP=BQ,∠CBQ=∠CAP=90°,
∵∠CAB=∠ABC=60°,
∴∠BAE=∠ABE=30°,
∵AB=AC=4,
∴AE=BE=,
∴∠BEF=60°,
设AP=t,则BQ=t,
∴EQ=﹣t,
在Rt△EFQ中,QF=EQ=(﹣t),
∴S△APQ=AP•QF=,即•t(﹣t)=,
解得t=或t=.即AP的长为或.
②当点Q在直线l下方时,如图所示,设BQ交l于点E,过点Q作QF⊥l于点F,
由题意可得AC=BC,PC=CQ,∠PCQ=∠ACB=60°,
∴∠ACP=∠BCQ,
∴△ACP≌△BCQ(SAS),
∴AP=BQ,∠CBQ=∠CAP=90°,
∵∠CAB=∠ABC=60°,
∴∠BAE=∠ABE=30°,
∴∠BEF=120°,∠QEF=60°,
∵AB=AC=4,
∴AE=BE=,
设AP=m,则BQ=m,
∴EQ=m﹣,
在Rt△EFQ中,QF=EQ=(m﹣),
∴S△APQ=AP•QF=,即•m•(m﹣)=,
解得m=(m=负值舍去).
综上可得,AP的长为:或或.
一十.条形统计图(共1小题)
13.(2023•十堰)市体育局对甲、乙两运动队的某体育项目进行测试,两队人数相等,测试后统计队员的成绩分别为:7分、8分、9分、10分(满分为10分).依据测试成绩绘制了如图所示尚不完整的统计图表:
成绩
7分
8分
9分
10分
人数
10
1
m
7
请根据图表信息解答下列问题:
(1)填空:α= 126 °,m= 2 ;
(2)补齐乙队成绩条形统计图;
(3)①甲队成绩的中位数为 7.5 ,乙队成绩的中位数为 8 ;
②分别计算甲、乙两队成绩的平均数,并从中位数和平均数的角度分析哪个运动队的成绩较好.
【答案】(1)126;2;
(2)见解答;
(3)甲、乙两队成绩的平均数均为8.3,但乙队的中位数比甲队大,所以乙运动队的成绩较好.
【解答】解:(1)由题意得,a=360﹣72﹣72﹣90=126;
乙队人数为:5÷=20(人),
故m=20﹣10﹣1﹣7=2.
故答案为:126;2;
(2)乙队7分人数为:20﹣4﹣5﹣4=7(人),
补齐乙队成绩条形统计图如下:
(3)①甲队成绩的中位数为:=7.5;
乙队成绩的中位数为:=8;
故答案为:7.5;8;
②甲队成绩的平均数为:(7×10+8+9×2+10×7)=8.3;
乙队成绩的平均数为:(7×7+8×4+9×5+10×4)=8.3;
因为甲、乙两队成绩的平均数相同,但乙队的中位数比甲队大,所以乙运动队的成绩较好.
一十一.列表法与树状图法(共1小题)
14.(2022•十堰)某兴趣小组针对视力情况随机抽取本校部分学生进行调查,将调查结果进行统计分析,绘制成如下不完整的统计图表.
抽取的学生视力情况统计表
类别
调查结果
人数
A
正常
48
B
轻度近视
76
C
中度近视
60
D
重度近视
m
请根据图表信息解答下列问题:
(1)填空:m= 16 ,n= 108 ;
(2)该校共有学生1600人,请估算该校学生中“中度近视”的人数;
(3)某班有四名重度近视的学生甲、乙、丙、丁,从中随机选择两名学生参加学校组织的“爱眼护眼”座谈会,请用列表或画树状图的方法求同时选中甲和乙的概率.
【答案】(1)16,108;
(2)估算该校学生中“中度近视”的人数为480人;
(3)P(同时选中甲和乙)=.
【解答】解:(1)由题意得:
48÷24%=200,
∴m=200﹣48﹣76﹣60=16,
n°=×360°=108°,
故答案为:16,108;
(2)由题意得:
1600×=480(人),
∴估算该校学生中“中度近视”的人数为480人;
(3)如图:
总共有12种等可能结果,
其中同时选中甲和乙的结果有2种,
∴P(同时选中甲和乙)==.
河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。
陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。
青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。