搜索
    上传资料 赚现金
    湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
    立即下载
    加入资料篮
    湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)01
    湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)02
    湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

    展开
    这是一份湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共31页。试卷主要包含了x+b,已知等内容,欢迎下载使用。

    湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    一.分式的化简求值(共1小题)
    1.(2023•荆州)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.
    二.解一元二次方程-配方法(共1小题)
    2.(2021•荆州)已知:a是不等式5(a﹣2)+8<6(a﹣1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+a+1=0.
    三.分式方程的应用(共1小题)
    3.(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.
    (1)求A,B饰品每件的进价分别为多少元?
    (2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,
    ①求x的取值范围;
    ②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
    四.反比例函数综合题(共1小题)
    4.(2022•荆州)小华同学学习函数知识后,对函数通过列表、描点、连线,画出了如图1所示的图象.
    x

    ﹣4
    ﹣3
    ﹣2
    ﹣1



    0
    1
    2
    3
    4

    y

    1

    2
    4

    1

    0
    ﹣4
    ﹣2

    ﹣1

    请根据图象解答:
    (1)【观察发现】
    ①写出函数的两条性质:   ;    ;
    ②若函数图象上的两点(x1,y1),(x2,y2)满足x1+x2=0,则y1+y2=0一定成立吗?   .(填“一定”或“不一定”)
    (2)【延伸探究】如图2,将过A(﹣1,4),B(4,﹣1)两点的直线向下平移n个单位长度后(n≥0),得到直线l与函数y=﹣(x≤﹣1)的图象交于点P,连接PA,PB.
    ①求当n=3时,直线l的解析式和△PAB的面积;
    ②直接用含n的代数式表示△PAB的面积.

    五.二次函数综合题(共2小题)
    5.(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.
    (1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是    ;
    (2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.
    ①当点P为抛物线顶点时,求△PBC的面积;
    ②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

    6.(2021•荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.
    (1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;
    (2)直接写出点E的坐标(用含t的式子表示);
    (3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.

    六.圆的综合题(共2小题)
    7.(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.
    (1)求证:①CD是⊙O的切线;
    ②△DEF∽△DBA;
    (2)若AB=5,DB=6,求sin∠DFE.

    8.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
    (1)求证:DE是半圆O的切线:
    (2)当点E落在BD上时,求x的值;
    (3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
    (4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.


    七.作图—复杂作图(共1小题)
    9.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.
    (1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;
    (2)在图2中,作出以BC为对角线的所有格点菱形.


    八.作图—应用与设计作图(共1小题)
    10.(2021•荆州)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED与AD的端点都在网格小正方形的顶点(称为格点)上.
    请在网格图形中画图:
    (1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;
    (2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.

    九.几何变换综合题(共1小题)
    11.(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.
    (1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;
    (2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.
    ①确定△PCF的形状,并说明理由;
    ②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).

    一十.相似形综合题(共1小题)
    12.(2021•荆州)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.
    (1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.
    ①求证:△CDG∽△GAH;
    ②求tan∠GHC.
    (2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF是否全等,并说明理由.

    一十一.解直角三角形的应用-仰角俯角问题(共1小题)
    13.(2022•荆州)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).

    一十二.列表法与树状图法(共1小题)
    14.(2022•荆州)为弘扬荆州传统文化,我市将举办中小学生“知荆州、爱荆州、兴荆州”知识竞赛活动.某校举办选拔赛后,随机抽取了部分学生的成绩,按成绩(百分制)分为A,B,C,D四个等级,并绘制了如下不完整的统计图表.
    等级
    成绩(x)
    人数
    A
    90<x≤100
    m
    B
    80<x≤90
    24
    C
    70<x≤80
    14
    D
    x≤70
    10
    根据图表信息,回答下列问题:
    (1)表中m=   ;扇形统计图中,B等级所占百分比是    ,C等级对应的扇形圆心角为    度;
    (2)若全校有1400人参加了此次选拔赛,则估计其中成绩为A等级的共有    人;
    (3)若全校成绩为100分的学生有甲、乙、丙、丁4人,学校将从这4人中随机选出2人参加市级竞赛.请通过列表或画树状图,求甲、乙两人至少有1人被选中的概率.


    湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.分式的化简求值(共1小题)
    1.(2023•荆州)先化简,再求值:(﹣)÷,其中x=()﹣1,y=(﹣2023)0.
    【答案】,2.
    【解答】解:原式=[﹣]•
    =(﹣)•
    =•
    =,
    ∵x=()﹣1=2,y=(﹣2023)0=1,
    ∴原式==2.
    二.解一元二次方程-配方法(共1小题)
    2.(2021•荆州)已知:a是不等式5(a﹣2)+8<6(a﹣1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+a+1=0.
    【答案】x1=2+,x2=2﹣.
    【解答】解:解不等式5(a﹣2)+8<6(a﹣1)+7,得a>﹣3,
    ∴最小整数解为﹣2,
    将a=﹣2代入方程x2+2ax+a+1=0,得x2﹣4x﹣1=0,
    配方,得(x﹣2)2=5.
    直接开平方,得x﹣2=±.
    解得x1=2+,x2=2﹣.
    三.分式方程的应用(共1小题)
    3.(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.
    (1)求A,B饰品每件的进价分别为多少元?
    (2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,
    ①求x的取值范围;
    ②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
    【答案】(1)A种饰品每件的进价为10元,则B种饰品每件的进价为9元;
    (2)①120≤x≤210,且x为整数;
    ②当采购A种饰品210件,B种饰品390件,商铺获利最大,最大利润为3630元.
    【解答】解:(1)设A种饰品每件的进价为a元,则B种饰品每件的进价为(a﹣1)元,
    由题意得:=×2,
    解得:a=10,
    经检验,a=10是所列方程的解,且符合题意,
    a﹣1=9,
    答:A种饰品每件的进价为10元,则B种饰品每件的进价为9元;
    (2)①由题意得:,
    解得:120≤x≤210,
    ∴购进A种饰品件数x的取值范围为:120≤x≤210,且x为整数;
    ②设采购A种饰品x件时的总利润为w元,
    当120≤x≤150时,w=15×600﹣10x﹣9(600﹣x)=﹣x+3600,
    ∵﹣1<0,
    ∴w随x的增大而减小,
    ∴当x=120时,w有最大值是:﹣120+3600=3480,
    当150<x≤210时,w=15×600﹣[10×150+10×60%(x﹣150)]﹣9(600﹣x)=3x+3000,
    ∵3>0,
    ∴w随x的增大而增大,
    ∴当x=210时,w有最大值是:3×210+3000=3630,
    ∵3630>3480,
    ∴w的最大值是3630,此时600﹣x=600﹣210=390,
    即当采购A种饰品210件,B种饰品390件,商铺获利最大,最大利润为3630元.
    四.反比例函数综合题(共1小题)
    4.(2022•荆州)小华同学学习函数知识后,对函数通过列表、描点、连线,画出了如图1所示的图象.
    x

    ﹣4
    ﹣3
    ﹣2
    ﹣1



    0
    1
    2
    3
    4

    y

    1

    2
    4

    1

    0
    ﹣4
    ﹣2

    ﹣1

    请根据图象解答:
    (1)【观察发现】
    ①写出函数的两条性质: 函数有最大值为4 ;  当x>0时,y随x的增大而增大 ;
    ②若函数图象上的两点(x1,y1),(x2,y2)满足x1+x2=0,则y1+y2=0一定成立吗? 不一定 .(填“一定”或“不一定”)
    (2)【延伸探究】如图2,将过A(﹣1,4),B(4,﹣1)两点的直线向下平移n个单位长度后(n≥0),得到直线l与函数y=﹣(x≤﹣1)的图象交于点P,连接PA,PB.
    ①求当n=3时,直线l的解析式和△PAB的面积;
    ②直接用含n的代数式表示△PAB的面积.

    【答案】(1)①函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);
    ②不一定;
    (2)①直线l的解析式为y=﹣x,△PAB的面积为;
    ②△PAB的面积为.
    【解答】解:(1)①由图象知:函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);
    故答案为:函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);
    ②假设x1=﹣,则y1=1,
    ∵x1+x2=0,
    ∴x2=,
    ∴y2=﹣8,
    ∴y1+y2=0不一定成立,
    故答案为:不一定;
    (2)①设直线AB的解析式为y=kx+b,
    则,
    解得,
    ∴直线AB的解析式为y=﹣x+3,
    当n=3时,直线l的解析式为y=﹣x+3﹣3=﹣x,
    设直线AB与y轴交于C,

    则△PAB的面积=△AOB的面积,
    ∴S△AOB=S△AOC+S△BOC===,
    ∴△PAB的面积为;
    ②设直线l与y轴交于D,
    ∵l∥AB,
    ∴△PAB的面积=△ABD的面积,

    由题意知,CD=n,
    ∴S△ABD=S△ACD+S△BCD

    =.
    ∴△PAB的面积为.
    五.二次函数综合题(共2小题)
    5.(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.
    (1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是  0或2或﹣ ;
    (2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.
    ①当点P为抛物线顶点时,求△PBC的面积;
    ②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

    【答案】(1)2或0或﹣;
    (2)①6;
    ②当m=时,S1﹣S2存在最大值,最大值为.
    【解答】解:(1)①当a﹣2=0时,即a=2时,
    y关于x的函数解析式为y=3x+,
    此时y=3x+与x轴的交点坐标为(﹣,0),
    与y轴的交点坐标为(0,);
    ②当a﹣2≠0时,y关于x的函数为二次函数,
    ∵二次函数图象抛物线与坐标轴有两个交点,
    ∴抛物线可能存在与x轴有两个交点,其中一个交点为坐标原点或与x轴有一个交点与y轴一个交点两种情况.
    当抛物线与x轴有两个交点且一个为坐标原点时,
    由题意得b=0,此时a=0,抛物线为y=﹣2x2+x.
    当y=0时,﹣2x2+x=0,
    解得x1=0,x2=.
    ∴其图象与x轴的交点坐标为(0,0)(,0).
    当抛物线与x轴有一个交点与y轴有一个交点时,
    由题意得,y=(a﹣2)x2+(a+1)x+b所对应的一元二次方程(a﹣2)x2+(a+1)x+b=0有两个相等实数根.
    ∴Δ=(a+1)2﹣4(a﹣2)×a=0,
    解得a=﹣,
    此时y=﹣x2+x﹣,
    当x=0时,y=﹣,
    ∴与y轴的交点坐标为(0,﹣),
    当y=0时,﹣x2+x﹣=0,
    解得x1=x2=,
    ∴与x轴的交点坐标为(,0),
    综上所述,若y关于x的函数y=(a﹣2)x2+(a+1)x+b的图象与坐标轴有两个交点,则a可取的值为2,0,﹣,
    故答案为:2或0或﹣;
    (2)①如图,设直线l与BC交于点F,
    根据题意得,
    解得,
    ∴抛物线的解析式为y=﹣x2+2x+8,
    当x=0时,y=8,
    ∴C(0,8),
    ∵y=﹣x2+2x+8=﹣(x﹣1)2+9,点P为抛物线顶点,
    ∴P(1,9),
    ∵B(4,0),C(0,8),
    ∴直线BC的解析式为y=﹣2x+8,
    ∴F(1,6),
    ∴PF=9﹣6=3,
    ∴△PBC的面积=OB•PF==6;
    ②S1﹣S2存在最大值,
    理由:如图,设直线x=m交x轴于H,
    由①得,OB=4,AO=2,AB=6,OC=8,AH=2+m,P(m,﹣m2+2m+8),
    ∴PH=﹣m2+2m+8,
    ∵OD∥PH,
    ∴△AOD∽△AHP,
    ∴,
    ∴,
    ∴OD=8﹣2m,
    ∵S1﹣S2=S△PAB﹣S△AOD﹣S△OBC==﹣3m2+8m=﹣3(m﹣)2+,
    ∵﹣3<0,0<m<4,
    ∴当m=时,S1﹣S2存在最大值,最大值为.

    6.(2021•荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.
    (1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;
    (2)直接写出点E的坐标(用含t的式子表示);
    (3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.

    【答案】(1)见解答;(2)(﹣t,1﹣t)或(t,1+t);(3)y=﹣3x2+12x﹣9或y=﹣x2+4x﹣3.
    【解答】解:(1)直线y=﹣x+1与x轴、y轴分别交于A,B两点,
    则点A、B的坐标分别为(1,0)、(0,1),
    则∠OBA=∠OAB=45°,
    ∵∠AOC+∠BOC=90°,∠BOC+∠BOE=90°,
    ∴∠AOC=∠BOE,
    ∵AO=BO,OC=OE,
    ∴△OAC≌△OBE(SAS),
    ∴∠OBE=∠OAC=45°,AC=BE=t,
    ∴∠EBA=∠EBO+∠OBA=∠OAC+∠OBA=45°+45°=90°,
    ∴BE⊥AB;

    (2)①当点C在线段AB上时,如图1﹣1,
    过点E作EH⊥OB于点H,

    ∵∠EBH=45°,
    ∴BH=EH=BE=t,
    故点E的坐标为(﹣t,1﹣t);
    ②当点C在线段BA的延长线上时,如图1﹣2,

    同理可得,点E的坐标为(t,1+t);
    综上,点E的坐标为(﹣t,1﹣t)或(t,1+t);

    (3)①当点C线段AB上时,如题图1﹣1,
    过点C作CN⊥OA于点N,
    当t=时,即AC=t=,
    则CN=AN=t=,
    则ON=OA﹣NA=1﹣=CN,
    故tan∠AOC==1=k,
    ∵△POA的面积=×AO×yP=×1×yP==,
    解得yP=1=c﹣①,
    ∵抛物线过点A(1,0),故a+b+c=0②,
    而6a+3b+2c=0③,
    联立①②③并解得,
    ∴抛物线的表达式为y=﹣x2+4x﹣3;
    ②抛物线过点A,则a+b+c=0,
    而6a+3b+2c=0,
    联立上述两式并解得:,
    故抛物线的表达式为y=a(x﹣2)2﹣a(a<0),
    则点P的坐标为(2,﹣a),

    则AC=BE=t=,
    则tan∠AOC=k==,
    故a=﹣3,
    故y=﹣3x2+12x﹣9.
    综上,y=﹣3x2+12x﹣9或y=﹣x2+4x﹣3.
    六.圆的综合题(共2小题)
    7.(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.
    (1)求证:①CD是⊙O的切线;
    ②△DEF∽△DBA;
    (2)若AB=5,DB=6,求sin∠DFE.

    【答案】(1)①②证明见解答过程;
    (2)sin∠DFE=.
    【解答】(1)证明:①∵四边形ABCD是菱形,
    ∴AB∥CD,
    ∵DH⊥AB,
    ∴∠CDH=∠DHA=90°,
    ∴CD⊥OD,
    ∵D为⊙O的半径的外端点,
    ∴CD是⊙O的切线;
    ②连接HF,

    ∴∠DEF=∠DHF,
    ∵DH为⊙O直径,
    ∴∠DFH=90°,
    ∴∠DHF=90°﹣∠BDH,
    ∵∠DHB=90°,
    ∴∠DBA=90°﹣∠BDH,
    ∴∠DHF=∠DBA=∠DEF,
    ∵∠EDF=∠BDA,
    ∴△DEF∽△DBA;
    (2)解:连接AC交BD于G.

    ∵菱形ABCD,BD=6,
    ∴AC⊥BD,AG=GC,DG=GB=3,
    在Rt△AGB中,AG==4,
    ∴AC=2AG=8,
    ∵S菱形ABCD=AC•BD=AB•DH,
    ∴DH==,
    由△DEF∽△DBA知:∠DFE=∠DAH,
    ∴sin∠DFE=sin∠DAH===.
    8.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
    (1)求证:DE是半圆O的切线:
    (2)当点E落在BD上时,求x的值;
    (3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
    (4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.


    【答案】(1)证明见解析部分;
    (2);
    (3)y=(0<x<);
    (4)<x<3或<x≤4.
    【解答】(1)证明:∵四边形ABCD是矩形,
    ∴∠DAO=90°,
    ∵将△OAD沿OD折叠,得到△OED,
    ∴∠OED=∠DAO=90°,
    ∴OE⊥DE,
    ∵OE是半径,
    ∴DE是⊙O的切线;

    (2)解:如图2中,当点E落在BD下方时,

    在Rt△ADB中,∠DAB=90°,AD=3,AB=4,
    ∴BD===5,
    ∵S△ADB=S△ADO+S△BDO,
    ∴×3×4=×3×x+×5×x,
    ∴x=.

    (3)解:图2中,当点E落在BD上时,

    ∵DA=DE,OA=OE,
    ∴OD垂直平分线段AE,
    ∵•AD•AO=•DO•AJ,
    ∴AJ=,
    ∴AE=2AJ=,
    ∵AG是直径,
    ∴∠AEG=∠ABF=90°,
    ∵∠EAG=∠BAF,
    ∴△AEG∽△ABF,
    ∴y==()2==(0<x<);

    (4)当⊙O与CD相切时,x=3,
    当⊙O经过点C时,x2=(4﹣x)2+32,
    ∴x=,
    观察图象可知,当<x<3或<x≤4时,半圆O与△BCD的边有两个交点.
    七.作图—复杂作图(共1小题)
    9.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.
    (1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;
    (2)在图2中,作出以BC为对角线的所有格点菱形.


    【答案】(1)(2)作图见解析部分.
    【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;
    (2)如图2中,菱形ABDC,菱形BECF即为所求.

    八.作图—应用与设计作图(共1小题)
    10.(2021•荆州)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED与AD的端点都在网格小正方形的顶点(称为格点)上.
    请在网格图形中画图:
    (1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;
    (2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.

    【答案】(1)(2)作图见解析部分.
    【解答】解:(1)如图,正方形ABCD,△DEF即为所求.
    (2)如图,正方形BKFG即为所求.

    九.几何变换综合题(共1小题)
    11.(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.
    (1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;
    (2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.
    ①确定△PCF的形状,并说明理由;
    ②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).

    【答案】(1)作图见解答.
    (2)①△PCF是等腰直角三角形.理由见解答.
    ②等联线AB=3k,线段PE=.
    【解答】解:(1)作图如下:(方法不唯一)

    (2)①△PCF是等腰直角三角形.理由为:
    如图,过点C作CN⊥BE交BE的延长线于N.

    由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,
    ∵AC=AB,∠A=∠PBD=∠N=90°,
    ∴四边形ABNC为正方形,
    ∴CN=AC=CM,
    又∵CE=CE,
    ∴Rt△CME≌Rt△CNE(HL),
    ∴∠3=∠4,
    而∠1+∠2+∠3+∠4=90°,∠CPF=90°,
    ∴∠PCF=∠2+∠3=∠CFP=45°,
    ∴△PCF是等腰直角三角形.
    ②如图,过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,
    则∠R=∠A=90°,

    ∵∠1+∠5=∠5+∠6=90°,
    ∴∠1=∠6,
    由△PCF是等腰直角三角形知:PC=PF,
    ∴△APC≌△RFP(AAS),
    ∴AP=FR,AC=PR,
    而AC=AB,
    ∴AP=BR=FR,
    在Rt△BRF中,BR2+FR2=BF2,,
    ∴AP=BR=FR=k,
    ∴PB=2AP=2k,
    ∴AB=AP+PB=BN=3k,
    ∵BR=FR,∠QBR=∠R=∠FQB=90°,
    ∴四边形BRFQ为正方形,BQ=OF=k,
    ∵FQ⊥BN,CN⊥BN,
    ∴FQ∥CN,
    ∴,
    而QE=BN﹣NE﹣BQ=3k﹣NE﹣k=2k﹣NE,
    ∴,
    解得:k,
    由①知:PM=AP=k,,
    ∴,
    答:等联线AB=3k,线段PE=.
    一十.相似形综合题(共1小题)
    12.(2021•荆州)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.
    (1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.
    ①求证:△CDG∽△GAH;
    ②求tan∠GHC.
    (2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF是否全等,并说明理由.

    【答案】(1)①证明过程见解答;
    ②;
    (2)不全等,理由见解答.
    【解答】(1)如图1,
    ①证明:∵四边形ABCD是矩形,
    ∴∠D=∠GAH=90°,
    ∴∠DCG+∠DGC=90°,
    ∵∠FGC=90°,
    ∴∠AGH+∠DGC=90°,
    ∴∠DCG=∠AGH,
    ∴△CDG∽△GAH.
    ②由翻折得∠EGF=∠EAF,
    ∴∠AGH=∠DAC=∠DCG,
    ∵CD=AB=2,AD=4,
    ∴=tan∠DAC==,
    ∴DG=CD=×2=1,
    ∴GA=4﹣1=3,
    ∵△CDG∽△GAH,
    ∴,
    ∴tan∠GHC==.
    (2)不全等,理由如下:
    ∵AD=4,CD=2,
    ∴AC==,
    ∵∠GCF=90°,
    ∴=tan∠DAC=,
    ∴CG=AC=×2=,
    ∴AG==5,
    ∴EA=AG=,
    ∴EF=EA•tan∠DAC==,
    ∴AF==,
    ∴CF=2=,
    ∵∠GCF=∠AEF=90°,而CG≠EA,CF≠EF,
    ∴△GCF与△AEF不全等.


    一十一.解直角三角形的应用-仰角俯角问题(共1小题)
    13.(2022•荆州)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).

    【答案】城徽的高AB约为12.5米.
    【解答】解:延长DF交AB于点G,

    则∠AGF=90°,DF=CE=6.6米,CD=EF=BG=1.5米,
    设FG=x米,
    ∴DG=FG+DF=(x+6.6)米,
    在Rt△AGF中,∠AFG=45°,
    ∴AG=FG•tan45°=x(米),
    在Rt△AGD中,∠ADG=32°,
    ∴tan32°==≈0.625,
    ∴x=11,
    经检验:x=11是原方程的根,
    ∴AB=AG+BG=11+1.5=12.5(米),
    ∴城徽的高AB约为12.5米.

    一十二.列表法与树状图法(共1小题)
    14.(2022•荆州)为弘扬荆州传统文化,我市将举办中小学生“知荆州、爱荆州、兴荆州”知识竞赛活动.某校举办选拔赛后,随机抽取了部分学生的成绩,按成绩(百分制)分为A,B,C,D四个等级,并绘制了如下不完整的统计图表.
    等级
    成绩(x)
    人数
    A
    90<x≤100
    m
    B
    80<x≤90
    24
    C
    70<x≤80
    14
    D
    x≤70
    10
    根据图表信息,回答下列问题:
    (1)表中m= 12 ;扇形统计图中,B等级所占百分比是  40% ,C等级对应的扇形圆心角为  84 度;
    (2)若全校有1400人参加了此次选拔赛,则估计其中成绩为A等级的共有  280 人;
    (3)若全校成绩为100分的学生有甲、乙、丙、丁4人,学校将从这4人中随机选出2人参加市级竞赛.请通过列表或画树状图,求甲、乙两人至少有1人被选中的概率.

    【答案】(1)12,40%,84;
    (2)280;
    (3).
    【解答】解:(1)抽取的学生人数为:10÷=60(人),
    ∴m=60﹣24﹣14﹣10=12,
    扇形统计图中,B等级所占百分比是:24÷60×100%=40%,C等级对应的扇形圆心角为:360°×=84°,
    故答案为:12,40%,84;
    (2)估计其中成绩为A等级的共有:1400×=280(人),
    故答案为:280;
    (3)画树状图如下:

    共有12种等可能的结果,其中甲、乙两人至少有1人被选中的结果有10种,
    ∴甲、乙两人至少有1人被选中的概率为=.

    相关试卷

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。

    湖北省武汉市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份湖北省武汉市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共34页。试卷主要包含了变化的数据如表,,交y轴于点C,问题提出等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map