![浙江省宁波市2021-2023三年中考数学真题分类汇编-02填空题知识点分类第1页](http://img-preview.51jiaoxi.com/2/3/14556242/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省宁波市2021-2023三年中考数学真题分类汇编-02填空题知识点分类第2页](http://img-preview.51jiaoxi.com/2/3/14556242/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省宁波市2021-2023三年中考数学真题分类汇编-02填空题知识点分类第3页](http://img-preview.51jiaoxi.com/2/3/14556242/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编(按题型难易度分层分类)
浙江省宁波市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
展开
这是一份浙江省宁波市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共19页。试卷主要包含了﹣5的绝对值是 ,请写出一个大于2的无理数,分解因式,的图象与DE交于点A,的图象上,BE⊥x轴于点E等内容,欢迎下载使用。
浙江省宁波市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
一.绝对值(共1小题)
1.(2021•宁波)﹣5的绝对值是 .
二.估算无理数的大小(共1小题)
2.(2022•宁波)请写出一个大于2的无理数: .
三.因式分解-提公因式法(共1小题)
3.(2021•宁波)分解因式:x2﹣3x= .
四.因式分解-运用公式法(共2小题)
4.(2023•宁波)分解因式:x2﹣y2= .
5.(2022•宁波)分解因式:x2﹣2x+1= .
五.分式有意义的条件(共1小题)
6.(2023•宁波)要使分式有意义,x的取值应满足 .
六.解分式方程(共1小题)
7.(2022•宁波)定义一种新运算:对于任意的非零实数a,b,a⊗b=+.若(x+1)⊗x=,则x的值为 .
七.反比例函数系数k的几何意义(共2小题)
8.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC=2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为 ,a的值为 .
9.(2021•宁波)在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(,)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为 .
八.反比例函数图象上点的坐标特征(共1小题)
10.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为 ,点F的坐标为 .
九.矩形的性质(共1小题)
11.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为 ,sin∠AFE的值为 .
一十.切线的性质(共2小题)
12.(2022•宁波)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为 .
13.(2021•宁波)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC,BD分别与⊙O相切于点C,D,延长AC,BD交于点P.若∠P=120°,⊙O的半径为6cm,则图中的长为 cm.(结果保留π)
一十一.圆锥的计算(共1小题)
14.(2023•宁波)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为 cm2.(结果保留π)
一十二.圆的综合题(共1小题)
15.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为 .
一十三.概率公式(共3小题)
16.(2023•宁波)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为 .
17.(2022•宁波)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .
18.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .
浙江省宁波市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
参考答案与试题解析
一.绝对值(共1小题)
1.(2021•宁波)﹣5的绝对值是 5 .
【答案】见试题解答内容
【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.
二.估算无理数的大小(共1小题)
2.(2022•宁波)请写出一个大于2的无理数: 如(答案不唯一) .
【答案】如(答案不唯一).
【解答】解:大于2的无理数有:
须使被开方数大于4即可,如(答案不唯一).
三.因式分解-提公因式法(共1小题)
3.(2021•宁波)分解因式:x2﹣3x= x(x﹣3) .
【答案】见试题解答内容
【解答】解:原式=x(x﹣3),
故答案为:x(x﹣3)
四.因式分解-运用公式法(共2小题)
4.(2023•宁波)分解因式:x2﹣y2= (x+y)(x﹣y) .
【答案】见试题解答内容
【解答】解:x2﹣y2=(x+y)(x﹣y).
故答案是:(x+y)(x﹣y).
5.(2022•宁波)分解因式:x2﹣2x+1= (x﹣1)2 .
【答案】(x﹣1)2.
【解答】解:x2﹣2x+1=(x﹣1)2.
五.分式有意义的条件(共1小题)
6.(2023•宁波)要使分式有意义,x的取值应满足 x≠2 .
【答案】x≠2.
【解答】解:由题意得:x﹣2≠0,
解得:x≠2,
故答案为:x≠2.
六.解分式方程(共1小题)
7.(2022•宁波)定义一种新运算:对于任意的非零实数a,b,a⊗b=+.若(x+1)⊗x=,则x的值为 ﹣ .
【答案】﹣.
【解答】解:根据题意得:+=,
化为整式方程得:x+x+1=(2x+1)(x+1),
解得:x=﹣,
检验:当x=﹣时,x(x+1)≠0,
∴原方程的解为:x=﹣.
故答案为:﹣.
七.反比例函数系数k的几何意义(共2小题)
8.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC=2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为 12 ,a的值为 9 .
【答案】12,9.
【解答】解:设A(m,),
∵AE∥x轴,且点E在函数y=上,
∴E(,).
∵AC=2BC,且点B在函数y=上,
∴B(﹣2m,﹣).
∵BD∥y轴,点D在函数y=上,
∴D(﹣2m,﹣).
∵△ABE的面积为9,
∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.
∴a﹣b=12.
∵△ABE的面积为9,四边形ABDE的面积为14,
∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.
∴a=﹣3b.
又a﹣b=12.
∴a=9.
故答案为:12,9.
9.(2021•宁波)在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(,)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为 或 .
【答案】或.
【解答】解:设点A的坐标为(m,),
∵点B是点A的“倒数点”,
∴点B坐标为(,),
∵点B的横纵坐标满足=,
∴点B在某个反比例函数上,
∴点B不可能在OE,OC上,
分两种情况:
①点B在ED上,
由ED∥x轴,
∴点B、点A的纵坐标相等,即=,
∴m=±2(﹣2舍去),
∴点B纵坐标为1,
此时,S△OBC=×3×1=;
②点B在DC上,
∴点B横坐标为3,即=3,
∴点B纵坐标为:=,
此时,S△OBC=×3×=;
故答案为:或.
八.反比例函数图象上点的坐标特征(共1小题)
10.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为 ,点F的坐标为 (,0) .
【答案】,(,0).
【解答】解:如图,
方法一:作DG⊥x轴于G,连接OD,设BC和OD交于I,
设点B(b,),D(a,),
由对称性可得:△BOD≌△BOA≌△OBC,
∴∠OBC=∠BOD,BC=OD,
∴OI=BI,
∴DI=CI,
∴=,
∵∠CID=∠BIO,
∴△CDI∽△BOI,
∴∠CDI=∠BOI,
∴CD∥OB,
∴S△BOD=S△AOB=S矩形AOCB=,
∵S△BOE=S△DOG==3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,
∴S梯形BEGD=S△BOD=,
∴•(a﹣b)=,
∴2a2﹣3ab﹣2b2=0,
∴(a﹣2b)•(2a+b)=0,
∴a=2b,a=﹣(舍去),
∴D(2b,),
即:(2b,),
在Rt△BOD中,由勾股定理得,
OD2+BD2=OB2,
∴[(2b)2+()2]+[(2b﹣b)2+(﹣)2]=b2+()2,
∴b=,
∴B(,2),D(2,),
∵直线OB的解析式为:y=2x,
∴直线DF的解析式为:y=2x﹣3,
当y=0时,2﹣3=0,
∴x=,
∴F(,0),
∵OE=,OF=,
∴EF=OF﹣OE=,
∴=,
方法二:如图,连接BF,BD,作DG⊥x轴于G,直线BD交x轴于H,
由上知:DF∥OB,
∴S△BOF=S△BOD=,
∵S△BOE=|k|=3,
∴==,
设EF=a,FG=b,则OE=2a,
∴BE=,OG=3a+b,DG=,
∵△BOE∽△DFG,
∴=,
∴=,
∴a=b,a=﹣(舍去),
∴D(4a,),
∵B(2a,),
∴==,
∴GH=EG=2a,
∵∠ODH=90°,DG⊥OH,
∴△ODG∽△DHG,
∴,
∴,
∴a=,
∴3a=,
∴F(,0)
故答案为:,(,0).
九.矩形的性质(共1小题)
11.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为 2 ,sin∠AFE的值为 ﹣1 .
【答案】2;﹣1.
【解答】解:∵BM=BE,
∴∠BEM=∠BME,
∵AB∥CD,
∴∠BEM=∠GCM,
又∵∠BME=∠GMC,
∴∠GCM=∠GMC,
∴MG=GC=1,
∵G为CD中点,
∴CD=AB=2.
连接BF,FM,
由翻折可得∠FEM=∠BEM,BE=EF,
∴BM=EF,
∵∠BEM=∠BME,
∴∠FEM=∠BME,
∴EF∥BM,
∴四边形BEFM为平行四边形,
∵BM=BE,
∴四边形BEFM为菱形,
∵∠EBC=∠EFC=90°,EF∥BG,
∴∠BNF=90°,
∵BF平分∠ABN,
∴FA=FN,
∴Rt△ABF≌Rt△NBF(HL),
∴BN=AB=2.
∵FE=FM,FA=FN,∠A=∠BNF=90°,
∴Rt△AEF≌Rt△NMF(HL),
∴AE=NM,
设AE=NM=x,
则BE=FM=2﹣x,NG=MG﹣NM=1﹣x,
∵FM∥GC,
∴△FMN∽△CGN,
∴=,
即=,
解得x=2+(舍)或x=2﹣,
∴EF=BE=2﹣x=,
∴sin∠AFE===﹣1.
故答案为:2;﹣1.
一十.切线的性质(共2小题)
12.(2022•宁波)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为 或 .
【答案】或.
【解答】解:连接OA,过点A作AD⊥BC于点D,
∵圆与AC相切于点A.
∴OA⊥AC,
由题意可知:D点位置分为两种情况,
①当∠CAD为90°时,此时D点与O点重合,设圆的半径=r,
∴OA=r,OC=4﹣r,
∵AC=2,
在Rt△AOC中,根据勾股定理可得:r2+4=(4﹣r)2,
解得:r=,
即AD=AO=;
②当∠ADC=90°时,AD=,
∵AO=,AC=2,OC=4﹣r=,
∴AD=,
综上所述,AD的长为或,
故答案为:或.
13.(2021•宁波)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC,BD分别与⊙O相切于点C,D,延长AC,BD交于点P.若∠P=120°,⊙O的半径为6cm,则图中的长为 2π cm.(结果保留π)
【答案】2π.
【解答】解:如图所示,连接OC,OD,
∵AC,BD分别与⊙O相切于点C,D,
∴∠OCP=∠ODP=90°,
由四边形内角和为360°可得,
∠COD=360°﹣∠OCP﹣∠ODP﹣∠CPD
=360°﹣90°﹣90°﹣120°
=60°.
∴的长==2π.
故答案为:2π.
一十一.圆锥的计算(共1小题)
14.(2023•宁波)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为 1500π cm2.(结果保留π)
【答案】1500π.
【解答】解:烟囱帽的侧面积为:×2π×30×50=1500π(cm2),
故答案为:1500π.
一十二.圆的综合题(共1小题)
15.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为 6或2 .
【答案】6或2.
【解答】解:如图1,连接OD,DE,
∵半圆O与BC相切于点D,
∴OD⊥BC,
在Rt△OBD中,OB=OE+BE=OD+3,BD=3.
∴OB2=BD2+OD2,
∴(OD+3)2=(3)2+OD2,
解得OD=6,
∴AO=EO=OD=6,
①当AP=PD时,此时P与O重合,
∴AP=AO=6;
②如图2,当AP′=AD时,
在Rt△ABC中,
∵∠C=90°,
∴AC⊥BC,
∴OD∥AC,
∴△BOD∽△BAC,
∴==,
∴==,
∴AC=10,CD=2,
∴AD===2,
∴AP′=AD=2;
③如图3,当DP′′=AD时,
∵AD=2,
∴DP′′=AD=2,
∵OD=OA,
∴∠ODA=∠BAD,
∴OD∥AC,
∴∠ODA=∠CAD,
∴∠BAD=∠CAD,
∴AD平分∠BAC,
过点D作DH⊥AE于点H,
∴AH=P″H,DH=DC=2,
∵AD=AD,
∴Rt△ADH≌Rt△ADC(HL),
∴AH=AC=10,
∴AH=AC=P″H=10,
∴AP″=2AH=20(E为AB边上一点,不符合题意,舍去),
综上所述:当△ADP为等腰三角形时,AP的长为6或2.
故答案为:6或2.
一十三.概率公式(共3小题)
16.(2023•宁波)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为 .
【答案】.
【解答】解:∵袋子里装有3个绿球、3个黑球和6个红球,
∴从袋中任意摸出一个球是绿球的概率为.
故答案为:.
17.(2022•宁波)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .
【答案】.
【解答】解:摸出红球的概率为=.
故答案为:.
18.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .
【答案】.
【解答】解:∵一个不透明的袋子里装有3个红球和5个黑球,
∴共有8个球,
∴从袋中任意摸出一个球是红球的概率为.
故答案为:.
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共16页。
这是一份2021-2023三年浙江省绍兴市中考数学真题分类汇编-02填空题知识点分类(含答案),共18页。试卷主要包含了因式分解,分解因式,方程的解是 等内容,欢迎下载使用。
这是一份山西省2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共15页。试卷主要包含了计算等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)