还剩14页未读,
继续阅读
所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编
成套系列资料,整套一键下载
四川省南充市2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
展开这是一份四川省南充市2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共17页。
四川省南充市2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
一.分式的化简求值(共1小题)
1.(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是( )
A. B.﹣ C. D.﹣
二.二次函数图象与系数的关系(共2小题)
2.(2023•南充)抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),若﹣2≤m≤1,则实数k的取值范围是( )
A.≤k≤1 B.k≤﹣或k≥1
C.﹣5≤k≤ D.k≤﹣5或k≥
3.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )
A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
三.二次函数图象上点的坐标特征(共1小题)
4.(2023•南充)若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )
A.(m,n+1) B.(m+1,n) C.(m,n﹣1) D.(m﹣1,n)
四.勾股定理(共1小题)
5.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是( )
A.BF=1 B.DC=3 C.AE=5 D.AC=9
五.多边形内角与外角(共1小题)
6.(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是( )
A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E
六.平行四边形的性质(共1小题)
7.(2021•南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )
A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF
七.菱形的性质(共1小题)
8.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )
A. B.2 C.+1 D.2﹣1
八.圆周角定理(共1小题)
9.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为( )
A.70° B.65° C.50° D.45°
九.作图—基本作图(共1小题)
10.(2023•南充)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10.以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧在∠CAB的内部相交于点P,画射线AP与BC交于点D,DE⊥AB,垂足为E.则下列结论错误的是( )
A.∠CAD=∠BAD B.CD=DE C.AD=5 D.CD:BD=3:5
一十.轴对称-最短路线问题(共1小题)
11.(2021•南充)如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:
①顺次连接点A′,B′,C,D的图形是平行四边形;
②点C到它关于直线AA′的对称点的距离为48;
③A′C﹣B′C的最大值为15;
④A′C+B′C的最小值为9.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
一十一.旋转的性质(共1小题)
12.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
一十二.相似三角形的应用(共1小题)
13.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为( )
A.6.4m B.8m C.9.6m D.12.5m
四川省南充市2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
参考答案与试题解析
一.分式的化简求值(共1小题)
1.(2022•南充)已知a>b>0,且a2+b2=3ab,则(+)2÷(﹣)的值是( )
A. B.﹣ C. D.﹣
【答案】B
【解答】解:(+)2÷(﹣)
=÷
=•
=﹣,
∵a2+b2=3ab,
∴(a+b)2=5ab,(a﹣b)2=ab,
∵a>b>0,
∴a+b=,a﹣b=,
∴﹣=﹣=﹣=﹣,
故选:B.
二.二次函数图象与系数的关系(共2小题)
2.(2023•南充)抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),若﹣2≤m≤1,则实数k的取值范围是( )
A.≤k≤1 B.k≤﹣或k≥1
C.﹣5≤k≤ D.k≤﹣5或k≥
【答案】B
【解答】解:∵抛物线y=﹣x2+kx+k﹣与x轴有交点,
∴Δ≥0,即k2+4(k﹣)≥0,
∴k2+4k﹣5≥0,
解得:k≤﹣5或k≥1;
抛物线y=﹣x2+kx+k﹣对称轴为直线x=,
①当k≤﹣5时,抛物线对称轴在直线x=﹣2左侧,此时抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),﹣2≤m≤1,如图:
∴﹣(﹣2)2﹣2k+k﹣≥0,
解得:k≤﹣,
∴k≤﹣;
②当k≥1时,抛物线对称轴在直线x=右侧,此时抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),﹣2≤m≤1,如图:
∴﹣(﹣2)2﹣2k+k﹣≤0,
解得:k≥﹣,
∴k≥1;
综上所述,k≤﹣或k≥1;
故选:B.
3.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )
A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣2
【答案】A
【解答】解:方法一:∵抛物线y=mx2﹣2m2x+n(m≠0),
∴该抛物线的对称轴为直线x=﹣=m,
∵当x1+x2>4且x1<x2时,都有y1<y2,
∴当m>0时,
0<2m≤4,
解得0<m≤2;
当m<0时,
2m>4,
此时m无解;
由上可得,m的取值范围为0<m≤2,
故选:A.
方法二:由y1<y2可得,
(mx22﹣2m2x2+n)﹣(mx12﹣2m2x1+n)>0,
整理,得:m(x2﹣x1)(x2+x1﹣2m)>0,
∵x1+x2>4且x1<x2,
∴当m>0时,则x2+x1﹣2m>0,
即2m≤4,
解得m≤2,
∴0<m≤2;
当m<0时,则x2+x1﹣2m<0,此时无解;
由上可得,0<m≤2,
故选:A.
三.二次函数图象上点的坐标特征(共1小题)
4.(2023•南充)若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )
A.(m,n+1) B.(m+1,n) C.(m,n﹣1) D.(m﹣1,n)
【答案】D
【解答】解:∵点P(m,n)在抛物线y=ax2(a≠0)上,
∴n=am2,
把x=m代入y=a(x+1)2得a(m+1)2≠n,故点(m,n+1)和点(m,n﹣1)不在抛物线y=a(x+1)2上,故A、C不合题意;
把x=m+1代入y=a(x+1)2得a(m+2)2≠n,故点(m+1,n)不在抛物线y=a(x+1)2上,故B不合题意;
把x=m﹣1代入y=a(x+1)2得a(m﹣1+1)2=am2=n,故点(m﹣1,n)在抛物线y=a(x+1)2上,D符合题意;
故选:D.
四.勾股定理(共1小题)
5.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是( )
A.BF=1 B.DC=3 C.AE=5 D.AC=9
【答案】A
【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,
∴∠1=∠2,DC=FD,∠C=∠DFB=90°,
∵DE∥AB,
∴∠2=∠3,
∴∠1=∠3,
∴AE=DE,
∵DE=5,DF=3,
∴AE=5,CD=3,故选项B、C正确;
∴CE==4,
∴AC=AE+EC=5+4=9,故选项D正确;
∵DE∥AB,∠DFB=90°,
∴∠EDF=∠DFB=90°,
∴∠CDE+∠FDB=90°,
∵∠CDE+∠DEC=90°,
∴∠DEC=∠FDB,
∵tan∠DEC=,tan∠FDB=,
∴,
解得BF=,故选项A错误;
故选:A.
五.多边形内角与外角(共1小题)
6.(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是( )
A.AE=AF B.∠EAF=∠CBF C.∠F=∠EAF D.∠C=∠E
【答案】C
【解答】解:在正五边形ABCDE中内角和:180°×3=540°,
∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,
∴D不符合题意;
∵以AB为边向内作正△ABF,
∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,
∵AE=AB,
∴AE=AF,∠EAF=∠FBC=48°,
∴A、B不符合题意;
∴∠F≠∠EAF,
∴C符合题意;
故选:C.
六.平行四边形的性质(共1小题)
7.(2021•南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )
A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF
【答案】A
【解答】解:∵▱ABCD的对角线AC,BD交于点O,
∴AO=CO,BO=DO,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF,AE=CF,∠CFE=∠AEF,
又∵∠DOC=∠BOA,
∴选项A成立,选项B、C、D不一定成立,
故选:A.
七.菱形的性质(共1小题)
8.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )
A. B.2 C.+1 D.2﹣1
【答案】C
【解答】解:如图,连结BD,作DH⊥AB,垂足为H,
∵四边形ABCD是菱形,
∴AB=AD,AD∥BC,
∵∠A=60°,
∴△ABD是等边三角形,∠ABC=180°﹣∠A=120°,
∴AD=BD,∠ABD=∠A=∠ADB=60°,
∴∠DBC=∠ABC﹣∠ABD=120°﹣60°=60°,
∵AE=BF,
∴△ADE≌△BDF(SAS),
∴DE=DF,∠ADE=∠FDB,
∴∠EDF=∠EDB+∠FDB=∠EDB+∠ADE=∠ADB=60°,
∴△DEF是等边三角形,
∵△DEF的周长是3,
∴DE=,
设AH=x,则HE=2﹣x,
∵AD=BD,DH⊥AB,
∴∠ADH=∠ADB=30°,
∴AD=2x,DH=x,
在Rt△DHE中,DH²+HE²=DE²,
∴(x)²+(2﹣x)²=()²,
解得:x=(负值舍去),
∴AD=2x=1+,
方法二:过点E作EH⊥AD于H.
故选:C.
八.圆周角定理(共1小题)
9.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为( )
A.70° B.65° C.50° D.45°
【答案】C
【解答】解:∵OF⊥BC,
∴∠BFO=90°,
∵∠BOF=65°,
∴∠B=90°﹣65°=25°,
∵弦CD⊥AB,AB为⊙O的直径,
∴=,
∴∠AOD=2∠B=50°.
故选:C.
九.作图—基本作图(共1小题)
10.(2023•南充)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10.以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧在∠CAB的内部相交于点P,画射线AP与BC交于点D,DE⊥AB,垂足为E.则下列结论错误的是( )
A.∠CAD=∠BAD B.CD=DE C.AD=5 D.CD:BD=3:5
【答案】C
【解答】解:由作图可得,AP平分∠BAC,
∴∠CAD=∠BAD,故选项A不符合题意;
∵∠C=90°,DE⊥AB,
∴CD=DE,故选项B不符合题意;
在Rt△ABC中,AC=6,AB=10,
∴BC==8,
∵△ABC的面积为=△ACD的面积+△ABD的面积,
∴AC•CD+AB•DE=AC•BC,
∴6•CD+10CD=6×8,
解得CD=3,
∴AD===3,故选项C符合题意;
∵BD=BC﹣CD=8﹣3=5,
∴CD:BD=3:5,故选项D不符合题意.
故选:C.
一十.轴对称-最短路线问题(共1小题)
11.(2021•南充)如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:
①顺次连接点A′,B′,C,D的图形是平行四边形;
②点C到它关于直线AA′的对称点的距离为48;
③A′C﹣B′C的最大值为15;
④A′C+B′C的最小值为9.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【解答】解:如图1中,当B′与D不重合时,
∵AB=A′B′,AB∥A′B′,AB=CD,AB∥CD,
∴A′B′=CD,A′B′∥CD,
∴四边形A′B′CD是平行四边形,
当点B′与D重合时,四边形不存在,故①错误,
作点C关于直线AA′的对称点E,连接CE交AA′于T,交BD于点O,作AH⊥BD于点 H,由平移的性质,得 AA′∥BD,
∴AH=TO,由矩形的对称性,得AH=OC,
∴TC=2OC,
∴CE=4OC,
∵四边形ABCD是矩形,
∴∠BCD=90°,CD=AB=15,
∴BD===25,
∵•BD•CO=•BC•CD,
∴OC==12,
∴EC=48,故②正确,
∵A′C﹣B′C≤A′B′,
∴A′C﹣B′C≤15,
∴A′C﹣B′C的最大值为15,故③正确,
如图2中,∵B′C=A′D,
∴A′C+B′C=A′C+A′D,
作点D关于AA′的对称点D′,连接DD′交AA′于J,过点D′作D′E⊥CD交CD的延长线于E,连接CD′交AA′于A′,此时CB′+CA′的值最小,最小值=CD′,
由△AJD∽△DAB,可得=,
∴=,
∴DJ=12,
∴DD′=24,
由△DED′∽△DAB,可得==,
∴==,
∴ED′=,DE=,
∴CE=CD+DE=15+=,
∴CD′===9,
∴A′C+B′C的最小值为9.故④正确,
故选:C.
一十一.旋转的性质(共1小题)
12.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
【答案】B
【解答】解:∵∠B=30°,∠C=90°,
∴∠CAB=180°﹣∠B﹣∠C=60°,
∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,
∴∠C′AB′=∠CAB=60°.
∵点B′恰好落在CA的延长线上,
∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.
故选:B.
一十二.相似三角形的应用(共1小题)
13.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为( )
A.6.4m B.8m C.9.6m D.12.5m
【答案】B
【解答】解:如图:
∵AB⊥BD,DE⊥BD,
∴∠ABC=∠EDC=90°,
∵∠ACB=∠DCE,
∴△ABC∽△EDC,
∴,
即,
∴DE=8(m),
故选:B.
相关试卷
陕西省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类:
这是一份陕西省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共15页。
河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类:
这是一份河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共27页。
重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类:
这是一份重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共13页。试卷主要包含了﹣n=x﹣y﹣z+m﹣n,…,等内容,欢迎下载使用。