![河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类第1页](http://img-preview.51jiaoxi.com/2/3/14568304/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类第2页](http://img-preview.51jiaoxi.com/2/3/14568304/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类第3页](http://img-preview.51jiaoxi.com/2/3/14568304/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
展开这是一份河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共27页。
河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
一.一元一次方程的应用(共1小题)
1.(2022•河北)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是( )
A.依题意3×120=x﹣120
B.依题意20x+3×120=(20+1)x+120
C.该象的重量是5040斤
D.每块条形石的重量是260斤
二.函数的图象(共1小题)
2.(2022•河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是( )
A.
B.
C.
D.
三.动点问题的函数图象(共1小题)
3.(2023•河北)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是( )
A. B.
C. D.
四.二次函数图象与系数的关系(共1小题)
4.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )
A.2 B.m2 C.4 D.2m2
五.三角形三边关系(共1小题)
5.(2022•河北)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )
A.1 B.2 C.7 D.8
六.等腰三角形的性质(共2小题)
6.(2023•河北)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为( )
A.2 B.3 C.4 D.5
7.(2023•河北)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=( )
A.30° B.n°
C.n°或180°﹣n° D.30°或150°
七.等腰直角三角形(共1小题)
8.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是( )
A.只有甲答的对
B.甲、丙答案合在一起才完整
C.甲、乙答案合在一起才完整
D.三人答案合在一起才完整
八.平行四边形的判定(共1小题)
9.(2022•河北)依据所标数据,下列一定为平行四边形的是( )
A. B.
C. D.
九.平行四边形的判定与性质(共1小题)
10.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是 B.只有甲、乙才是
C.只有甲、丙才是 D.只有乙、丙才是
一十.菱形的性质(共1小题)
11.(2023•河北)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2 上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=( )
A.42° B.43° C.44° D.45°
一十一.正多边形和圆(共2小题)
12.(2023•河北)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是( )
A.a<b B.a=b
C.a>b D.a,b大小无法比较
13.(2021•河北)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是( )
A.20 B.30
C.40 D.随点O位置而变化
一十二.弧长的计算(共1小题)
14.(2022•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )
A.11πcm B.πcm C.7πcm D.πcm
一十三.作图—复杂作图(共2小题)
15.(2023•河北)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.
(1)作BD的垂直平分线交BD于点O;
(2)连接AO,在AO的延长线上截取OC=AO;
(3)连接DC,BC,则四边形ABCD即为所求.
在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )
A.两组对边分别平行 B.两组对边分别相等
C.对角线互相平分 D.一组对边平行且相等
16.(2021•河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:
①以O为圆心,OA为半径画圆;
②在⊙O上任取一点P(不与点A,B重合),连接AP;
③作AB的垂直平分线与⊙O交于M,N;
④作AP的垂直平分线与⊙O交于E,F.
结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;
结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.
对于结论Ⅰ和Ⅱ,下列判断正确的是( )
A.Ⅰ和Ⅱ都对 B.Ⅰ和Ⅱ都不对 C.Ⅰ不对Ⅱ对 D.Ⅰ对Ⅱ不对
一十四.翻折变换(折叠问题)(共1小题)
17.(2022•河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )
A.中线 B.中位线 C.高线 D.角平分线
一十五.相似三角形的应用(共1小题)
18.(2021•河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=( )
A.1cm B.2cm C.3cm D.4cm
一十六.条形统计图(共1小题)
19.(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )
A.蓝 B.粉 C.黄 D.红
一十七.众数(共1小题)
20.(2022•河北)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )
A.只有平均数 B.只有中位数
C.只有众数 D.中位数和众数
河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
参考答案与试题解析
一.一元一次方程的应用(共1小题)
1.(2022•河北)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是( )
A.依题意3×120=x﹣120
B.依题意20x+3×120=(20+1)x+120
C.该象的重量是5040斤
D.每块条形石的重量是260斤
【答案】B
【解答】解:由题意得出等量关系为:
20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,
∵已知搬运工体重均为120斤,设每块条形石的重量是x斤,
∴20x+3×120=(20+1)x+120,
∴A选项不正确,B选项正确;
由题意:大象的体重为20×240+360=5160斤,
∴C选项不正确;
由题意可知:一块条形石的重量=2个搬运工的体重,
∴每块条形石的重量是240斤,
∴D选项不正确;
综上,正确的选项为:B.
故选:B.
二.函数的图象(共1小题)
2.(2022•河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是( )
A.
B.
C.
D.
【答案】C
【解答】解:∵一个人完成需12天,
∴一人一天的工作量为,
∵m个人共同完成需n天,
∴一人一天的工作量为,
∵每人每天完成的工作量相同,
∴mn=12.
∴n=,
∴n是m的反比例函数,
∴选取6组数对(m,n),在坐标系中进行描点,则正确的是:C.
故选:C.
三.动点问题的函数图象(共1小题)
3.(2023•河北)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是( )
A. B.
C. D.
【答案】D
【解答】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,
∴两个机器人最初的距离是AM+CN+2R,
∵两个人机器人速度相同,
∴同时到达点A,C,
∴两个机器人之间的距离y越来越小,故排除A、C;
当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是半径R,保持不变,
当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除B;
故选:D.
四.二次函数图象与系数的关系(共1小题)
4.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )
A.2 B.m2 C.4 D.2m2
【答案】A
【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,
∴x=0或x=m2或x=﹣m或x=m,
∵这四个交点中每相邻两点间的距离都相等,
若m>0,则m2=2m,
∴m=2,
若m<0时,则m2=﹣2m,
∴m=﹣2.
∵抛物线y=x2﹣m2的对称轴x=0,抛物线y=﹣x2+m2x的对称轴x=,
∴这两个函数图象对称轴之间的距离==2.
故选:A.
五.三角形三边关系(共1小题)
5.(2022•河北)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )
A.1 B.2 C.7 D.8
【答案】C
【解答】解:∵平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形,
∴1+d+1+1>5且1+5+1+1>d,
∴d的取值范围为:2<d<8,
∴则d可能是7.
故选:C.
六.等腰三角形的性质(共2小题)
6.(2023•河北)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为( )
A.2 B.3 C.4 D.5
【答案】B
【解答】解:∵△ABC为等腰三角形,
∴AB=AC或AC=BC,
当AC=BC=4时,AD+CD=AC=4,此时不满足三角形三边关系定理,
当AC=AB=3时.满足三角形三边关系定理,
∴AC=3.
故选:B.
7.(2023•河北)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=( )
A.30° B.n°
C.n°或180°﹣n° D.30°或150°
【答案】C
【解答】解:当BC=B′C′时,△ABC≌△A′B′C′(SSS),
∴∠C′=∠C=n°,
当BC≠B′C′时,如图,
∵A′C′=A′C″,
∴∠A′C″C′=∠C′=n°,
∴∠A′C″B′=180°﹣n°,
∴∠C′=n°或180°﹣n°,
故选:C.
七.等腰直角三角形(共1小题)
8.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是( )
A.只有甲答的对
B.甲、丙答案合在一起才完整
C.甲、乙答案合在一起才完整
D.三人答案合在一起才完整
【答案】B
【解答】解:由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,
①当CA⊥BA时,
∵∠B=45°,BC=2,
∴AC=BC•sin45°=2×=,
即此时d=,
②当CA=BC时,
∵∠B=45°,BC=2,
∴此时AC=2,
即d≥2,
综上,当d=或d≥2时能作出唯一一个△ABC,
故选:B.
八.平行四边形的判定(共1小题)
9.(2022•河北)依据所标数据,下列一定为平行四边形的是( )
A. B.
C. D.
【答案】D
【解答】解:A、80°+110°≠180°,故A选项不符合条件;
B、只有一组对边平行不能确定是平行四边形,故B选项不符合题意;
C、不能判断出任何一组对边是平行的,故C选项不符合题意;
D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;
故选:D.
九.平行四边形的判定与性质(共1小题)
10.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是 B.只有甲、乙才是
C.只有甲、丙才是 D.只有乙、丙才是
【答案】A
【解答】解:方案甲中,连接AC,如图所示:
∵四边形ABCD是平行四边形,O为BD的中点,
∴OB=OD,OA=OC,
∵BN=NO,OM=MD,
∴NO=OM,
∴四边形ANCM为平行四边形,方案甲正确;
方案乙中:
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN⊥BD,CM⊥BD,
∴AN∥CM,∠ANB=∠CMD,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(AAS),
∴AN=CM,
又∵AN∥CM,
∴四边形ANCM为平行四边形,方案乙正确;
方案丙中:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN平分∠BAD,CM平分∠BCD,
∴∠BAN=∠DCM,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(ASA),
∴AN=CM,∠ANB=∠CMD,
∴∠ANM=∠CMN,
∴AN∥CM,
∴四边形ANCM为平行四边形,方案丙正确;
故选:A.
一十.菱形的性质(共1小题)
11.(2023•河北)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2 上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=( )
A.42° B.43° C.44° D.45°
【答案】C
【解答】解:如图,延长BG,
∵∠ADE=146°,
∴∠ADB=180°﹣∠ADE=34°,
∵∠α=∠ADB+∠AHD,
∴∠AHD=∠α﹣∠ADB=50°﹣34°,=16°,
∵l1∥l2,
∴∠GIF=∠AHD=16°,
∵∠EGF=∠β+∠GIF,
∵△EFG是等边三角形,
∴∠EGF=60°,
∴∠β=∠EGF﹣∠GIF=60°﹣16°=44°,
故选:C.
一十一.正多边形和圆(共2小题)
12.(2023•河北)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是( )
A.a<b B.a=b
C.a>b D.a,b大小无法比较
【答案】A
【解答】解:连接P4P5,P5P6.
∵点P1~P8是⊙O的八等分点,
∴P3P4=P4P5=P5P6=P6P7,P1P7=P1P3=P4P6,
∴b﹣a=P3P4+P7P6﹣P1P3,
∵P5P4+P5P6>P4P6,
∴P3P4+P7P6>P1P3,
∴b﹣a>0,
∴a<b,
故选:A.
13.(2021•河北)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是( )
A.20 B.30
C.40 D.随点O位置而变化
【答案】B
【解答】解:设正六边形ABCDEF的边长为x,
过E作FD的垂线,垂足为M,连接AC,
∵∠FED=120°,FE=ED,
∴∠EFD=∠FDE,
∴∠EDF=(180°﹣∠FED)
=30°,
∵正六边形ABCDEF的每个角为120°.
∴∠CDF=120°﹣∠EDF=90°.
同理∠AFD=∠FAC=∠ACD=90°,
∴四边形AFDC为矩形,
∵S△AFO=FO×AF,
S△CDO=OD×CD,
在正六边形ABCDEF中,AF=CD,
∴S△AFO+S△CDO=FO×AF+OD×CD
=(FO+OD)×AF
=FD×AF
=10,
∴FD×AF=20,
DM=cos30°DE=x,
DF=2DM=x,
EM=sin30°DE=,
∴S正六边形ABCDEF=S矩形AFDC+S△EFD+S△ABC
=AF×FD+2S△EFD
=x•x+2×x•x
=x2+x2
=x2
=(AF×FD)
=30,
故选:B.
一十二.弧长的计算(共1小题)
14.(2022•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )
A.11πcm B.πcm C.7πcm D.πcm
【答案】A
【解答】解:OA⊥PA,OB⊥PB,OA,OB交于点O,如图,
∴∠OAP=∠OBP=90°,
∵∠P=40°,
∴∠AOB=140°,
∴优弧AMB对应的圆心角为360°﹣140°=220°,
∴优弧AMB的长是:=11π(cm),
故选:A.
一十三.作图—复杂作图(共2小题)
15.(2023•河北)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.
(1)作BD的垂直平分线交BD于点O;
(2)连接AO,在AO的延长线上截取OC=AO;
(3)连接DC,BC,则四边形ABCD即为所求.
在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )
A.两组对边分别平行 B.两组对边分别相等
C.对角线互相平分 D.一组对边平行且相等
【答案】C
【解答】解:由作图得:DO=BO,AO=CO,
∴四边形ABCD为平行四边形,
故选:C.
16.(2021•河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:
①以O为圆心,OA为半径画圆;
②在⊙O上任取一点P(不与点A,B重合),连接AP;
③作AB的垂直平分线与⊙O交于M,N;
④作AP的垂直平分线与⊙O交于E,F.
结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;
结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.
对于结论Ⅰ和Ⅱ,下列判断正确的是( )
A.Ⅰ和Ⅱ都对 B.Ⅰ和Ⅱ都不对 C.Ⅰ不对Ⅱ对 D.Ⅰ对Ⅱ不对
【答案】D
【解答】解:如图,连接EM,EN,MF.NF.
∵MN垂直平分AB,EF垂直平分AP,由“垂径定理的逆定理”可知,MN和EF都是⊙O的直径,
∴OM=ON,OE=OF,
∴四边形MENF是平行四边形,
∵EF=MN,
∴四边形MENF是矩形,故(Ⅰ)正确,
观察图形可知当∠MOF=∠AOB,
∴S扇形FOM=S扇形AOB,
观察图形可知,这样的点P不唯一(如下图所示),故(Ⅱ)错误,
故选:D.
一十四.翻折变换(折叠问题)(共1小题)
17.(2022•河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )
A.中线 B.中位线 C.高线 D.角平分线
【答案】D
【解答】解:由已知可得,
∠1=∠2,
则l为△ABC的角平分线,
故选:D.
一十五.相似三角形的应用(共1小题)
18.(2021•河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=( )
A.1cm B.2cm C.3cm D.4cm
【答案】C
【解答】解:如图:过O作OM⊥CD,垂足为M,过O'作O'N⊥AB,垂足为N,
∵CD∥AB,
∴△CDO∽△ABO',即相似比为,
∴=,
∵OM=15﹣7=8(cm),O'N=11﹣7=4(cm),
∴=,
∴AB=3cm,
故选:C.
一十六.条形统计图(共1小题)
19.(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )
A.蓝 B.粉 C.黄 D.红
【答案】D
【解答】解:根据题意得:
5÷10%=50(人),
(16÷50)×100%=32%,
则喜欢红色的人数是:50×28%=14(人),
50﹣16﹣5﹣14=15(人),
∵柱的高度从高到低排列,
∴图2中“( )”应填的颜色是红色.
故选:D.
一十七.众数(共1小题)
20.(2022•河北)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )
A.只有平均数 B.只有中位数
C.只有众数 D.中位数和众数
【答案】D
【解答】解:根据题意知,追加前5个数据的中位数是5,众数是5,
追加后5个数据的中位数是5,众数为5,
∵数据追加后平均数会变大,
∴集中趋势相同的只有中位数和众数,
故选:D.
相关试卷
这是一份陕西省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共15页。
这是一份内蒙古赤峰2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类(含答案),共23页。
这是一份河北省2021-2023三年中考数学真题分类汇编-01选择题(基础题)知识点分类,共21页。