![北师大版数学八年级上册坐标平面内图形的轴对称和平移(提高) 知识讲解 (含答案)01](http://img-preview.51jiaoxi.com/2/3/14075742/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级上册坐标平面内图形的轴对称和平移(提高) 知识讲解 (含答案)02](http://img-preview.51jiaoxi.com/2/3/14075742/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级上册坐标平面内图形的轴对称和平移(提高) 知识讲解 (含答案)03](http://img-preview.51jiaoxi.com/2/3/14075742/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北师大版八年级上册3 轴对称与坐标变化综合训练题
展开坐标平面内图形的轴对称和平移(提高)
【学习目标】
- 能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.
- 掌握左右、上下平移点的坐标规律.
【要点梳理】
要点一、关于坐标轴对称点的坐标特征
1.关于坐标轴对称的点的坐标特征
P(a,b)关于x轴对称的点的坐标为 (a,-b);
P(a,b)关于y轴对称的点的坐标为 (-a,b);
P(a,b)关于原点对称的点的坐标为 (-a,-b).
2.象限的角平分线上点坐标的特征
第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);
第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).
3.平行于坐标轴的直线上的点
平行于x轴的直线上的点的纵坐标相同;
平行于y轴的直线上的点的横坐标相同.
要点二、用坐标表示平移
1.点的平移:
在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).
要点诠释:
(1)在坐标系内,左右平移的点的坐标规律:右加左减;
(2)在坐标系内,上下平移的点的坐标规律:上加下减;
(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.
2.图形的平移:
在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
要点诠释:
(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.
(2)平移只改变图形的位置,图形的大小和形状不发生变化.
【典型例题】
类型一、用坐标表示轴对称
1.在直角坐标系中,已知点A(a+b,2-a)与点B(a-5,b-2a)关于y轴对称,
(1)试确定点A、B的坐标;
(2)如果点B关于x轴的对称的点是C,求△ABC的面积.
【思路点拨】(1)根据在平面直角坐标系中,关于y轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a,b即可解答本题;
(2)根据点B关于x轴的对称的点是C,得出C点坐标,进而利用三角形面积公式求出即可.
【答案与解析】
解:(1)∵点A(a+b,2-a)与点B(a-5,b-2a)关于y轴对称,
∴,
解得:
,
∴点A、B的坐标分别为:(4,1),(-4,1);
(2)∵点B关于x轴的对称的点是C,
∴C点坐标为:(-4,-1),
∴△ABC的面积为:×BC×AB=×2×8=8.
【总结升华】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.
举一反三:
【变式】小华看到了坐标系中点B关于X轴的对称点为C(-3,2),点A关于Y轴对称点为D(-3,4),若将A、B、C、D顺次连接,此图形的面积是多少?
【答案】
解:∵B关于x轴的对称点为C(-3,2),
∴B(-3,-2),
∵点A关于y轴对称点为D(-3,4),
∴A(3,4),
∴△ABD的面积为:×AD×DB=×6×6=18.
2.已知点A(a,3)、B(-4,b),试根据下列条件求出a、b的值.
(1)A、B两点关于y轴对称;
(2)A、B两点关于x轴对称;
(3)AB∥x轴;
(4)A、B两点在第二、四象限两坐标轴夹角的平分线上.
【思路点拨】
(1)关于y轴对称,y不变,x变为相反数.
(2)关于x轴对称,x不变,y变为相反数.
(3)AB∥x轴,即两点的纵坐标不变即可.
(4)在二、四象限两坐标轴夹角的平分线上的点的横纵坐标互为相反数,即分别令点A,点B的横纵坐标之和为0,列出方程并解之,即可得出a,b.
【答案与解析】
解:(1)A、B两点关于y轴对称,
故有b=3,a=4;
(2)A、B两点关于x轴对称;
所以有a=-4,b=-3;
(3)AB∥x轴,
即b=3,a为≠-4的任意实数.
(4)如图,
根据题意,a+3=0;
b-4=0;
所以a=-3,b=4.
【总结升华】本题主要考查学生对点在坐标系中的对称问题的掌握;在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.
类型二、用坐标表示平移
3.(2020春•黄陂区校级月考)如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).
(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;
(2)试说明△A′B′C′是如何由△ABC平移得到的;
(3)请直接写出△A′B′C′的面积为 .
【思路点拨】(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2)可得A、B、C三点的坐标变化规律,进而可得答案;
(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;
(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.
【答案与解析】
解:(1)A′为(4,0)、B′为(1,3)C′为(2,﹣2);
(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);
(3)△A′B′C′的面积为6.
【总结升华】此题主要考查了坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
举一反三:
【变式】(2020•大庆校级模拟)如图所示,△COB是由△AOB经过某种变换后得到的图形,观察点A与点C的坐标之间的关系,解答下列问题:
(1)若点M的坐标为(x、y),则它的对应点N的坐标为 .
(2)若点P(a,2)与点Q(﹣3,b)关于x轴对称,求代数式…的值.
【答案】
解:(1)由图象知点M和点N关于x轴对称,
∵点M的坐标为(x、y),
∴点N的坐标为(x,﹣y);
(2)∵点P(a,2)与点Q(﹣3,b)关于x轴对称,
∴a=﹣3,b=﹣2,
∴…
=+++…+,
=﹣+﹣+…+,
=﹣,
=.
类型三、综合应用
4. (2020春•临沂期末)如图是某台阶的一部分,如果建立适当的坐标系,使A点的坐标为(0,0),B点的坐标为(1,1)
(1)直接写出C,D,E,F的坐标;
(2)如果台阶有10级,你能求得该台阶的长度和高度吗?
【思路点拨】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可;
(2)利用平移的性质求出横向与纵向的长度,然后求解即可.
【答案与解析】
解:(1)∵点P(a﹣2,2a+8),在x轴上,
∴2a+8=0,
解得:a=﹣4,
故a﹣2=﹣4﹣2=﹣6,
则P(﹣6,0);
(2))∵点P(a﹣2,2a+8),在y轴上,
∴a﹣2=0,
解得:a=2,
故2a+8=2×2+8=12,
则P(0,12);
(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,
∴a﹣2=1,
解得:a=3,
故2a+8=14,
则P(1,14);
(4)∵点P到x轴、y轴的距离相等,
∴a﹣2=2a+8或a﹣2+2a+8=0,
解得:a1=﹣10,a2=﹣2,
故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,
则P(﹣12,﹣12);
故当a=﹣2则:a﹣2=﹣4,2a+8=4,
则P(﹣4,4).
综上所述:P(﹣12,﹣12),(﹣4,4).
【总结升华】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.
初中数学北师大版八年级上册3 轴对称与坐标变化同步练习题: 这是一份初中数学北师大版八年级上册3 轴对称与坐标变化同步练习题,共5页。
数学八年级上册1 函数练习: 这是一份数学八年级上册1 函数练习,共4页。
北师大版八年级上册6 实数同步训练题: 这是一份北师大版八年级上册6 实数同步训练题,共5页。