![人教版数学九年级上册同步讲义第21课旋转单元检测(原卷版)第1页](http://img-preview.51jiaoxi.com/2/3/14072271/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级上册同步讲义第21课旋转单元检测(原卷版)第2页](http://img-preview.51jiaoxi.com/2/3/14072271/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版数学九年级上册同步讲义第21课旋转单元检测(原卷版)
展开
这是一份人教版数学九年级上册同步讲义第21课旋转单元检测(原卷版),共5页。
第21课 旋转单元检测一、单选题1.下列四个图案中,既是轴对称图形,又是中心对称图形的是( )2.时钟钟面上的秒针绕中心旋转180°,下列说法正确的是( )A.时针不动,分针旋转了6°B.时针不动,分针旋转了30°C.时针和分针都没有旋转D.分针旋转了3°,时针旋转的角度很小3.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )A. B. C. D. 4.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是( )A.M或O或N B.E或O或C C.E或O或N D.M或O或C5.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=2,∠C=120°,则点B′的坐标为( )A.(3,) B.(3,) C.(,) D.(,)6.如图,Rt△ABC中,∠ACB=90°,∠B=30°,S△ABC=,将△ABC绕点C逆时针旋转至△A′B′C,使得点A'恰好落在AB上,A'B′与BC交于点D,则S△A′CD为( )A. B. C. D.7.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是( )A.(,1) B.(1,﹣) C.(2,﹣2) D.(2,﹣2)8.已知,将点A1(4,2)向左平移3个单位到达点A2的位置,再向上平移4个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转90°,则旋转后A3的坐标为( )A. B. C. D.二、填空题9.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,若AP=1,那么线段PP′的长等于_____.10.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .11.将一个正六边形绕着其中心,至少旋转 度可以和原来的图形重合.12.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连结AE,CE,则△ADE的面积是_____.13.如图,中,,,,把绕着它的斜边中点逆时针旋转至的位置,交于点.与重叠部分的面积为________.14.如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OPo按逆时针方向旋转,再将其长度伸长为OP0的2倍,得到线段OP1 ;又将线段OP1按逆时针方向旋转,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,, 则(1)点P5的坐标为 (2)落在x轴正半轴上的点Pn坐标是 ,( n是8的整数倍.)三、解答题16.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.17.如图,将两块直角三角尺的60°角和90°角的顶点A叠放在一起.将三角尺ADE绕点A旋转,旋转过程中三角尺ADE的边AD始终在∠BAC的内部在旋转过程中,探索:(1)∠BAE与∠CAD的度数有何数量关系,并说明理由;(2)试说明∠CAE﹣∠BAD=30°;(3)作∠BAD和∠CAE的平分线AM、AN,在旋转过程中∠MAN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化范围.18.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求四边形ABCD的面积.19.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是 .(结果可以不化简)