2022-2023学年广东省汕头市聿怀中学高二上学期期末数学试题含解析
展开2022-2023学年广东省汕头市聿怀中学高二上学期期末数学试题
一、单选题
1.已知是虚数单位,,则“复数为纯虚数”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】B
【分析】复数为纯虚数时,根据充分必要条件的定义进行判断.
【详解】为纯虚数,则,且,即.
因此“复数为纯虚数”不能推出“”, 而“”时“复数为纯虚数”一定成立,所以“复数为纯虚数”是“” 的必要不充分条件.
故选:B
2.抛物线的焦点坐标是( )
A. B. C. D.
【答案】C
【分析】将抛物线方程化为标准方程,由此可得抛物线的焦点坐标.
【详解】将抛物线的化为标准方程为,,开口向上,焦点在轴的正半轴上,
所以焦点坐标为.
故选:C.
3.设是等差数列的前项和,若,则
A. B. C. D.
【答案】A
【详解】,,选A.
4.已知函数.若,则的大小关系为( )
A. B.
C. D.
【答案】C
【分析】根据的单调性,只要比较,,的大小即可得.
【详解】,,即,
又是增函数,所以.
故选:C.
5.函数f(x)=在[—π,π]的图像大致为
A. B.
C. D.
【答案】D
【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.
【详解】由,得是奇函数,其图象关于原点对称.又.故选D.
【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.
6.已知各项均为正数的等比数列的前项和为,若,则的值为( )
A.4 B. C.2 D.
【答案】A
【分析】设出公比根据题干条件列出方程,求出公比,从而利用等比数列通项的基本量计算求出答案.
【详解】设数列的公比为,
则,得,
解得或(舍),
所以.
故选:A.
7.已知为抛物线的焦点,点在抛物线上,为的重心,则( )
A. B. C. D.
【答案】C
【分析】由抛物线方程确定焦点坐标,根据抛物线焦半径公式和重心的坐标表示可直接求得结果.
【详解】由抛物线方程知:;
设,,,
则;
为的重心,,则,
.
故选:C.
8.已知是边长为2的等边三角形,为圆的直径,若点为圆上一动点,则的取值范围为( )
A. B. C. D.
【答案】B
【分析】由题意得,然后利用数量积的运算律和计算公式计算即可.
【详解】如图所示
由图像可知,与夹角的范围为,
所以,
所以.
故选:B.
二、多选题
9.已知关于的不等式解集为,则( )
A.
B.不等式的解集为
C.
D.不等式的解集为
【答案】BCD
【解析】根据已知条件得和是方程的两个实根,且,根据韦达定理可得,根据且,对四个选项逐个求解或判断可得解.
【详解】因为关于的不等式解集为,
所以和是方程的两个实根,且,故错误;
所以,,所以,
所以不等式可化为,因为,所以,故正确;
因为,又,所以,故正确;
不等式可化为,又,
所以,即,即,解得,故正确.
故选:BCD.
【点睛】利用一元二次不等式的解集求出参数的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.
10.如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )
A. B.
C. D.
【答案】BC
【分析】根据线面垂直的判定定理可得BC的正误,平移直线构造所考虑的线线角后可判断AD的正误.
【详解】设正方体的棱长为,
对于A,如图(1)所示,连接,则,
故(或其补角)为异面直线所成的角,
在直角三角形,,,故,
故不成立,故A错误.
对于B,如图(2)所示,取的中点为,连接,,则,,
由正方体可得平面,而平面,
故,而,故平面,
又平面,,而,
所以平面,而平面,故,故B正确.
对于C,如图(3),连接,则,由B的判断可得,
故,故C正确.
对于D,如图(4),取的中点,的中点,连接,
则,
因为,故,故,
所以或其补角为异面直线所成的角,
因为正方体的棱长为2,故,,
,,故不是直角,
故不垂直,故D错误.
故选:BC.
11.已知点在圆上,点、,则( )
A.点到直线的距离小于
B.点到直线的距离大于
C.当最小时,
D.当最大时,
【答案】ACD
【分析】计算出圆心到直线的距离,可得出点到直线的距离的取值范围,可判断AB选项的正误;分析可知,当最大或最小时,与圆相切,利用勾股定理可判断CD选项的正误.
【详解】圆的圆心为,半径为,
直线的方程为,即,
圆心到直线的距离为,
所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;
如下图所示:
当最大或最小时,与圆相切,连接、,可知,
,,由勾股定理可得,CD选项正确.
故选:ACD.
【点睛】结论点睛:若直线与半径为的圆相离,圆心到直线的距离为,则圆上一点到直线的距离的取值范围是.
12.已知两个等差数列和的前项和分别为和,且,则使得为整数的正整数的值为( )
A. B. C. D.
【答案】ACD
【分析】由等差中项的性质和等比数列的求和公式得出,进而可得出为的正约数,由此可得出正整数的可能取值.
【详解】由题意可得,则,
由于为整数,则为的正约数,则的可能取值有、、,
因此,正整数的可能取值有、、.
故选:ACD.
【点睛】本题考查两个等差数列前项和比值的计算,涉及数的整除性质的应用,考查计算能力,属于中等题.
三、填空题
13.若,则的最小值是___________.
【答案】
【分析】由,结合基本不等式即可.
【详解】因为,所以,
所以,
当且仅当即时,取等号成立.
故的最小值为,
故答案为:
14.若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为______
【答案】0.686
【分析】根据题意,先求得与至少有一个正常工作的概率,再结合独立事件概率的乘法公式,即可求解.
【详解】由题意,系统正常工作的情况分成两个步骤,A正常工作且B,C至少有一个正常工作的情况,其中正常工作的概率为0.7;正常工作的概率为0.8, 正常工作的概率为0.9,
则与至少有一个正常工作的概率为,
所以这个系统正常工作的概率为:0.7×0.98=0.686;
故答案为:0.686;
【点睛】本题主要考查了对立事件和相互独立事件的概率的计算,其中解答中熟记相互独立事件的概率的计算公式,结合对立事件的概率计算公式求解是的关键,着重考查分析问题和解答问题的能力,属于基础题.
15.已知椭圆:的右焦点F,点Р在椭圆C上,又点,则的最小值为___________.
【答案】6
【分析】由椭圆的定义得到,进而将转化为,经分析当三点共线时,,从而可求出结果.
【详解】
由椭圆的定义知:,所以,
因此,
而的最小值是当三点共线时,
因此,
又,因此,
所以,因此的最小值为,
故答案为:6.
16.在三棱锥中,点在底面的射影是的外心,,则该三棱锥外接球的体积为___________.
【答案】
【分析】先由正弦定理得,外接圆的半径,再由勾股定理,即可求出半径,从而可得外接球体积.
【详解】解:设的外心为,连接,则球心在
上,连接,
则为外接圆的半径r,
连接,设外接球的半径为R,
则,
在中,由正弦定理得
解得,即,
在中,
在,中,即
,解得:,
所以外接球的体积为:,
故答案为:
四、解答题
17.为了了解某城市居民用水量的情况,我们获得100户居民某年的月均用水量(单位:吨)通过对数据的处理,我们获得了该100户居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏)100户居民月均用水量的频率分布表
组号 | 分组 | 频数 | 频率 |
1 | 4 | 0.04 | |
2 |
| 0.08 | |
3 | 15 |
| |
4 | 22 |
| |
5 |
| ||
6 | 14 | 0.14 | |
7 | 6 | ||
8 | 4 | 0.04 | |
9 |
| 0.02 | |
合计 | 100 |
|
(1)确定表中x与y的值;
(2)求频率分布直方图中左数第4个矩形的高度;
(3)在频率分布直方图中画出频率分布折线图.
【答案】(1)
(2)
(3)答案见解析
【分析】(1)求出区间内的频率为,频数为,区间内的频率为,频数为,由此能求出.
(2)左数第个矩形对应的频率为,且表中的数据组距为,由此能求出它的高度.
(3)由频率分布直方图,能画出折线图.
【详解】(1)解:区间内的频率为,频数为,区间内的频率为,频数为,则.
(2)解:因为左数第个矩形对应的频率为,且表中的数据组距为,所以它的高度为:.
(3)解:由频率分布直方图,画出折线图如图所示:
.
18.的内角的对边分别为,已知.
(1)求;
(2)若,面积为2,求.
【答案】(1);(2)2.
【详解】试题分析:(1)利用三角形的内角和定理可知,再利用诱导公式化简,利用降幂公式化简,结合,求出;(2)由(1)可知,利用三角形面积公式求出,再利用余弦定理即可求出.
试题解析:(1),∴,∵,
∴,∴,∴;
(2)由(1)可知,
∵,∴,
∴,
∴.
19.设数列的前n项和,满足,且.
(1)证明:数列为等差数列;
(2)求的通项公式.
【答案】(1)证明见解析;(2)
【分析】(1)将两边同时取倒数在整理,根据等差数列的定义即可证明;
(2)由(1)求出,进而可得,当时,,再检验是否满足,进而可得的通项公式.
【详解】(1)由可得,
即,
所以是以为首项,以为公差的等差数列,
(2)由(1)可得,即,
当时,,
当时,所以不满足,
所以,
【点睛】方法点睛:
由数列前项和求通项公式时,一般根据求解,注意检验是否满足,不满足则需要分段.
20.如图,四棱锥的底面是矩形,底面,,为的中点,且.
(1)求;
(2)求二面角的正弦值.
【答案】(1);(2)
【分析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知条件得出,求出的值,即可得出的长;
(2)求出平面、的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.
【详解】(1)[方法一]:空间坐标系+空间向量法
平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
设,则、、、、,
则,,
,则,解得,故;
[方法二]【最优解】:几何法+相似三角形法
如图,连结.因为底面,且底面,所以.
又因为,,所以平面.
又平面,所以.
从而.
因为,所以.
所以,于是.
所以.所以.
[方法三]:几何法+三角形面积法
如图,联结交于点N.
由[方法二]知.
在矩形中,有,所以,即.
令,因为M为的中点,则,,.
由,得,解得,所以.
(2)[方法一]【最优解】:空间坐标系+空间向量法
设平面的法向量为,则,,
由,取,可得,
设平面的法向量为,,,
由,取,可得,
,
所以,,
因此,二面角的正弦值为.
[方法二]:构造长方体法+等体积法
如图,构造长方体,联结,交点记为H,由于,,所以平面.过H作的垂线,垂足记为G.
联结,由三垂线定理可知,
故为二面角的平面角.
易证四边形是边长为的正方形,联结,.
,
由等积法解得.
在中,,由勾股定理求得.
所以,,即二面角的正弦值为.
【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.
(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.
21.已知双曲线:与双曲线的渐近线相同,且经过点.
(1)求双曲线的方程;
(2)已知双曲线的左、右焦点分别为,,直线经过,倾斜角为,与双曲线交于两点,求的面积.
【答案】(1)
(2)
【分析】(1)根据共渐近线设出双曲线方程,代入点的坐标即可得解;
(2)根据题意求出直线的方程,联立直线方程与双曲线方程,消去后由韦达定理得,从而由弦长公式求得弦长,再求出到直线距离后即可求得的面积.
【详解】(1)依题意,设所求双曲线方程为,
代入点得,即,
所以双曲线方程为,即.
(2)由(1)得,则,,,
又直线倾斜角为,则,故直线的方程为,
设,,
联立,消去,得,
则,,,
由弦长公式得,
又点到直线的距离,
所以.
22.已知函数
(1)解关于的不等式;
(2)若对任意的,恒成立,求实数的取值范围.
【答案】(Ⅰ)答案不唯一,具体见解析.(Ⅱ)
【分析】(Ⅰ)将原不等式化为,分类讨论可得不等式的解.
(Ⅱ)若则;若,则参变分离后可得在恒成立,利用基本不等式可求的最小值,从而可得的取值范围.
【详解】(Ⅰ) 即,
,(ⅰ)当时,不等式解集为;
(ⅱ)当时,不等式解集为;
(ⅲ)当时,不等式解集为,
综上所述,(ⅰ)当时,不等式解集为;
(ⅱ)当时,不等式解集为;
(ⅲ)当时,不等式解集为 .
(Ⅱ)对任意的恒成立,即恒成立,即对任意的,恒成立.
①时,不等式为恒成立,此时;
②当时,,
, , ,
当且仅当时,即,时取“”, .
综上 .
【点睛】含参数的一元二次不等式,其一般的解法是:先考虑对应的二次函数的开口方向,再考虑其判别式的符号,其次在判别式于零的条件下比较两根的大小,最后根据不等号的方向和开口方向得到不等式的解.含参数的不等式的恒成立问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,后者可用函数的单调性或基本不等式来求.