高中数学高考2021年高考数学(文)12月模拟评估卷(三)(全国1卷)(原卷版) (1)
展开2021年高考数学(文)12月模拟评估卷(三)(全国1卷)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分
满分150分.考试时间120分钟
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,,则的子集的个数为( )
A.1 B.2 C.3 D.4
2.命题“存在,”的否定是( )
A.对任意的, B.对任意的,
C.不存在, D.存在,
3.已知i是虚数单位,a为实数,且,则a=( )
A.2 B.1 C.-2 D.-1
4.为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:
①样本数据落在区间的频率为0.45;
②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;
③样本的中位数为480万元.
其中正确结论的个数为( )
A.0 B.1 C.2 D.3
5.已知椭圆()的两焦点分别为、.若椭圆上有一点,使,则的取值范围是( ).
A. B. C. D.
6.若一直线与曲线y=lnx和曲线x2=ay(a>0)相切于同一点P,则a的值为( )
A.2e B.3
C. D.2
7.如图,在中,,,,为边的中点,且,则向量的模为( )
A. B. C.或 D.或
8.如图为一个几何体的三视图,则该几何体的外接球的表面积为( )
A. B. C. D.
9.设函数在的图象大致如图,则( )
A. B. C. D.
10.“阿基米德多面体”是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为,则其体积为( )
A. B.5 C. D.
11.已知,在第二象限内,那么的值等于( )
A. B. C. D.以上都不对
12.已知函数,若,,则的取值范围是( )
A. B. C. D.
二.填空题:本大题共4小题,每小题5分
13.______.
14. 已知,满足约束条件,则的最小值为______.
15. 已知圆和圆相交于A、B两点,则线段AB的长度为__________.
16.已知在锐角中,角的对边分别为,若,则的最小值为__________.
三、解答题:共70分,解答应写出文字说明,证明过程和解题步骤.第17-21题为必考题.第22、23题为选考题.
(一)、必考题:共60分
17.(12分) 已知等差数列的前项和为,且,.
(1)求数列的通项公式以及前项和;
(2)求数列的前项和.
18.(12分) 在四棱锥中,底面是正方形,、分别为、的中点,底面.
(1)求证:平面;
(2)若与底面所成的角为45°,,求点到平面的距离.
19.(12分) 已知为抛物线的焦点,以为圆心作半径为的圆,圆与轴的负半轴交于点,与抛物线分别交于点、.
(1)若为直角三角形,求半径的值;
(2)判断直线与抛物线的位置关系,并给出证明.
20.(12分) 疫苗关系人民群众健康,关系公共卫生安全和国家安全.因此,疫苗行业在生产、运输、储存、使用等任何一个环节都容不得半点瑕疵.国家规定,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:
| 未感染病毒 | 感染病毒 | 总计 |
未注射疫苗 | 40 | ||
注射疫苗 | 60 | ||
总计 | 100 | 100 | 200 |
现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为.
(1)求列联表中的数据,,,的值;
(2)能否有把握认为注射此种疫苗有效?
(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只进行病例分析,然后从这五只小白鼠中随机抽取3只对注射疫苗情况进行核实,求至少抽到2只为未注射疫苗的小白鼠的概率.
附:,.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
21.(12分) 已知函数(且)定义域为.
(1)若在上有且只有一个零点,求实数的值;
(2)当时,若在上恒成立,求整数的最大值.
(注:其中是自然对数的底数,)
(二)、选考题:共10分. 请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分.
22.[选修4-4:坐标系与参数方程] (10分)
在平面直角坐标系中,曲线的参数方程为,为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(1)求曲线的普通方程和直线的极坐标方程;
(2)射线,和曲线分别交于点,,与直线分别交于,两点,求四边形的面积.
23.[选修4-5:不等式选讲] (10分)
已知函数.
(1)求不等式的解集;
(2)若的解集包含,求实数的取值范围.
高中数学高考2021年高考数学(文)12月模拟评估卷(一)(全国1卷)(原卷版) (1): 这是一份高中数学高考2021年高考数学(文)12月模拟评估卷(一)(全国1卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
高中数学高考2021年高考数学(文)12月模拟评估卷(三)(全国3卷)(原卷版) (1): 这是一份高中数学高考2021年高考数学(文)12月模拟评估卷(三)(全国3卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
高中数学高考2021年高考数学(文)12月模拟评估卷(三)(全国2卷)(原卷版) (1): 这是一份高中数学高考2021年高考数学(文)12月模拟评估卷(三)(全国2卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。