终身会员
搜索
    上传资料 赚现金
    初中数学中考复习 专题27(四川省成都市专用)(解析版)-2021年31个地区中考数学精品模拟试卷
    立即下载
    加入资料篮
    初中数学中考复习 专题27(四川省成都市专用)(解析版)-2021年31个地区中考数学精品模拟试卷01
    初中数学中考复习 专题27(四川省成都市专用)(解析版)-2021年31个地区中考数学精品模拟试卷02
    初中数学中考复习 专题27(四川省成都市专用)(解析版)-2021年31个地区中考数学精品模拟试卷03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题27(四川省成都市专用)(解析版)-2021年31个地区中考数学精品模拟试卷

    展开
    这是一份初中数学中考复习 专题27(四川省成都市专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    A卷(共100分)
    第Ⅰ卷(选择题,共30分)
    一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
    1. |﹣2020|的结果是( )
    A.12020B.2020C.-12020D.﹣2020
    【答案】B
    【解析】根据绝对值的性质直接解答即可.
    |﹣2020|=2020
    2. 一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )
    A. B. C. D.
    【答案】A
    【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.
    从正面看所得到的图形为A选项中的图形.
    3. 月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为( )
    A.38.4×104B.3.84×105C.0.384×106D.3.84×106
    【答案】B
    【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    38.4万=384000=3.84×105
    4.在平面直角坐标系中,将点向右平移个单位得到点,则点关于轴的对称点的坐标
    为( )
    A. B. C. D.
    【答案】A
    【解析】先根据点向右平移个单位点的坐标特征:横坐标加3,纵坐标不变,得到点的坐标,再根据关于轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.
    ∵将点向右平移个单位,
    ∴点的坐标为:(0,2),
    ∴点关于轴的对称点的坐标为:(0,-2).
    5.下列运算正确的是( )
    A.3xy﹣xy=2B.x3•x4=x12
    C.x﹣10÷x2=x﹣5D.(﹣x3)2=x6
    【答案】D
    【解析】分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.
    A.3xy﹣xy=2xy,故本选项不合题意;
    B.x3•x4=x7,故本选项不合题意;
    C.x﹣10÷x2=x﹣12,故本选项不合题意;
    D.(﹣x3)2=x6,故本选项符合题意.
    6.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( )
    A.40,42B.42,43C.42,42D.42,41
    【答案】C
    【解析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.
    将这组数据重新排列为39,40,40,42,42,42,43,44,
    所以这组数据的众数为42,中位数为42+422=42
    7. 如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )
    A.DB=DEB.AB=AEC.∠EDC=∠BACD.∠DAC=∠C
    【答案】D
    【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC即可.
    【解析】由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,
    ∵AD=AD,
    ∴△ADE≌△ADB(AAS),
    ∴DB=DE,AB=AE,
    ∵∠AEB+∠B=180°
    ∴∠BAC+∠BDE=180°,
    ∵∠EDC+∠BDE=180°,
    ∴∠EDC=∠BAC,
    故A,B,C正确.
    8.已知关于x的分式方程xx-2-4=k2-x的解为正数,则k的取值范围是( )
    A.﹣8<k<0B.k>﹣8且k≠﹣2C.k>﹣8 且k≠2D.k<4且k≠﹣2
    【答案】B
    【分析】表示出分式方程的解,根据解为正数确定出k的范围即可.
    【解析】分式方程xx-2-4=k2-x,
    去分母得:x﹣4(x﹣2)=﹣k,
    去括号得:x﹣4x+8=﹣k,
    解得:x=k+83,
    由分式方程的解为正数,得到k+83>0,且k+83≠2,
    解得:k>﹣8且k≠﹣2.
    9. 如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是( )
    A.AEEC=EFCDB.EFCD=EGABC.AFFD=BGGCD.CGBC=AFAD
    【分析】根据平行线分线段成比例性质进行解答便可.
    【解析】∵EF∥BC,
    ∴AFFD=AEEC,
    ∵EG∥AB,
    ∴AEEC=BGGC,
    ∴AFFD=BGGC,
    故选:C.
    10.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
    ①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.
    其中,正确的结论有( )
    A.1个B.2个C.3个D.4个
    【答案】C
    【解析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.
    抛物线开口向下,a<0,对称轴为x=-b2a=1,因此b>0,与y轴交于正半轴,因此c>0,
    于是有:ac<0,因此①正确;
    由x=-b2a=1,得2a+b=0,因此③不正确,
    抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,
    由对称轴x=1,抛物线与x 轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,
    综上所述,正确的结论有①②④,
    第Ⅱ卷(非选择题,共70分)
    二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)
    11. 把多项式a3﹣4a分解因式,结果是 .
    【答案】a(a+2)(a﹣2).
    【解析】首先提公因式a,再利用平方差进行二次分解即可.
    原式=a(a2﹣4)=a(a+2)(a﹣2).
    12. 在平面直角坐标系中,△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是 .
    【解析】(4,8)或(﹣4,﹣8).
    【分析】利用关于原点对称的点的坐标,把A点横纵坐标分别乘以2或﹣2得到其对应点A1的坐标.
    【解析】∵△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,
    而点A的坐标为(2,4),
    ∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),
    即(4,8)或(﹣4,﹣8).
    13. 如图,△ABC内接于⊙O,MH⊥BC于点H,若AC=10,AH=8,⊙O的半径为7,则AB= .
    【答案】565.
    【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.
    【解析】作直径AD,连接BD,
    ∵AD为直径,∴∠ABD=90°,
    又AH⊥BC,∴∠ABD=∠AHC,
    由圆周角定理得,∠D=∠C,∴△ABD∽△AHC,
    ∴ABAH=ADAC,即AB8=1410,
    解得,AB=565
    14. 我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为 .
    【答案】x+y=250x+10y=30.
    【分析】根据“现用30钱,买得2斗酒”,即可得出关于x,y的二元一次方程组,此题得解.
    【解析】依题意,得:x+y=250x+10y=30.
    故答案为:x+y=250x+10y=30.
    三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)
    15.(8分)
    (1)计算:;
    (2)解不等式组:
    【答案】(1)0;(2)-3<x<-2
    【解析】(1)原式=
    =0;
    (2),
    解不等式①得:x<-2,
    解不等式②得:x>-3,
    ∴不等式组的解集为:-3<x<-2.
    16.(8分)先化简,再求值:÷(1﹣),其中a=5.
    【答案】a+2,7.
    【解析】根据分式的混合运算法则把原式化简,代入计算即可.
    ÷(1﹣)
    =÷(﹣)
    =•
    =a+2,
    当a=5时,原式=5+2=7.
    17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
    请解答下列问题:
    (1)该企业员工中参加本次安全生产知识测试共有 人;
    (2)补全条形统计图;
    (3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.
    【答案】见解析。
    【解析】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.
    (1)20÷50%=40,
    所以该企业员工中参加本次安全生产知识测试共有40人;
    故答案为40;
    (2)C等级的人数为40﹣8﹣20﹣4=8(人),
    补全条形统计图为:
    (3)800×=160,
    所以估计该企业员工中对安全生产知识的掌握能达到A级的人数为160人.
    18. (8分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米/秒,参考数据:3≈1.732,2≈1.414).
    19.(10分)如图,已知一次函数与反比例函数的图象在第一、三象限分别交于,两点,连接,.
    (1)求一次函数和反比例函数的解析式;
    (2)的面积为______;
    (3)直接写出时x的取值范围.
    【答案】(1),;(2)8;(3)-2<x<0或x>6.
    【解析】此题是考查一次函数与反比例函数的交点问题、待定系数法求一次函数解析式,待定系数法求反比例函数解析式,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.
    (1)把A代入反比例函数,根据待定系数法即可求得m,得到反比例函数的解析式,然后将代入,求得a,再根据待定系数法求得一次函数的解析式即可;
    (2)求出一次函数图像与x轴交点坐标,再利用面积公式计算即可;
    (3)根据图象得到一次函数图像在反比例函数图像上方时的x取值范围.
    解:(1)把代入反比例函数得:m=6,
    ∴反比例函数的解析式为,
    ∵点在反比例函数图像上,
    ∴-3a=6,解得a=-2,
    ∴B(-2,-3),
    ∵一次函数y1=kx+b的图象经过A和B,
    ∴,解得:,
    ∴一次函数的解析式为;
    (2)∵,,一次函数的解析式为,
    令y=0,解得:x=4,即一次函数图像与x轴交点为(4,0),
    ∴S△AOB=,
    故答案为:8;
    (3)由图象可知:
    时,即一次函数图像在反比例函数图像上方,
    x的取值范围是:-2<x<0或x>6.
    20.(10分)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.
    (1)试判断直线DE与⊙O的位置关系,并说明理由;
    (2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.
    【答案】见解析。
    【解析】本题考查切线的判定和性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    (1)直线DE与⊙O相切,
    连结OD.
    ∵AD平分∠BAC,
    ∴∠OAD=∠CAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵DE⊥AC,即∠AED=90°,
    ∴∠ODE=90°,即DE⊥OD,
    ∴DE是⊙O的切线;
    (2)过O作OG⊥AF于G,
    ∴AF=2AG,
    ∵∠BAC=60°,OA=2,
    ∴AG=OA=1,
    ∴AF=2,
    ∴AF=OD,
    ∴四边形AODF是菱形,
    ∴DF∥OA,DF=OA=2,
    ∴∠EFD=∠BAC=60°,
    ∴EF=DF=1.
    B卷(共50分)
    一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)
    21. 当x=12.代数式(x+1)(x﹣1)+x(2﹣x),的值为________.
    【答案】0。
    【解析】直接利用乘法公式以及单项式乘以多项式运算法则计算得出答案.
    原式=x2﹣1+2x﹣x2
    =2x﹣1,
    当x=12时,
    原式=2×12-1=0.
    22. 已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是 .
    【答案】2
    【分析】根据根与系数的关系求解.
    【解析】根据题意得则x1+x2=4,x1x2=﹣7
    所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2
    23.如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是 .
    【答案】()2n+1ab.
    【解析】利用菱形的面积为两对角线乘积的一半,得到菱形I1 的面积,同理可得菱形I2的面积,根据规律可得菱形In的面积.
    由题意得:菱形I1 的面积为:×AG×AE=×=()3•ab;
    菱形I2的面积为:×FQ×FN=×(×)×(b)=()5•ab;
    …,
    ∴菱形In的面积为:()2n+1ab
    24.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为 .
    【答案】2或-3+172.
    【分析】分点P在AB下方、点P在AB上方两种情况,分别求解即可.
    【解析】①当点P在AB下方时
    作AB的平行线l,使点O到直线AB和到直线l的距离相等,则△ABP的面积是△AOB的面积的2倍,
    直线AB与x轴交点的坐标为(﹣1,0),则直线l与x轴交点的坐标C(1,0),
    设直线l的表达式为:y=x+b,将点C的坐标代入上式并解得:b=﹣1,
    故直线l的表达式为y=x﹣1①,而反比例函数的表达式为:y=2x②,
    联立①②并解得:x=2或﹣1(舍去);
    ②当点P在AB上方时,
    同理可得,直线l的函数表达式为:y=x+3③,
    联立①③并解得:x=-3±172(舍去负值);
    故答案为:2或-3+172.
    25. 如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为 .
    【答案】317.
    【解析】根据矩形的性质可得BD=13,再根据BP=BA可得DQ=DP=8,所以得CQ=3,在Rt△BCQ中,根据勾股定理即可得BQ的长.
    ∵矩形ABCD中,AB=5,AD=12,∠BAD=∠BCD=90°,
    ∴BD=AB2+AD2=13,
    ∵BP=BA=5,
    ∴PD=BD﹣BP=8,
    ∵BA=BP,
    ∴∠BAP=∠BPA=∠DPQ,
    ∵AB∥CD,
    ∴∠BAP=∠DQP,
    ∴∠DPQ=∠DQP,
    ∴DQ=DP=8,
    ∴CQ=DQ﹣CD=DQ﹣AB=8﹣5=3,
    ∴在Rt△BCQ中,根据勾股定理,得
    BQ=BC2+CQ2=153=317.
    二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)
    26.(9分)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.
    请解答下列问题:
    (1)求快车和慢车的速度;
    (2)求图中线段EC所表示的y1与x之间的函数表达式;
    (3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.
    【答案】见解析。
    【解析】(1)快车的速度为:180÷2=90千米/小时,
    慢车的速度为:180÷3=60千米/小时,
    答:快车的速度为90千米/小时,慢车的速度为60千米/小时;
    (2)由题意可得,
    点E的横坐标为:2+1.5=3.5,
    则点E的坐标为(3.5,180),
    快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),
    则点C的坐标为(5.5,360),
    设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,
    ,得,
    即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135;
    (3)设点F的横坐标为a,
    则60a=90a﹣135,
    解得,a=4.5,
    则60a=270,
    即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.
    27.(9分)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.
    (1)BE与MN的数量关系是 .
    (2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.
    【答案】见解析。
    【分析】(1)如图①中,只要证明△PMN的等腰直角三角形,再利用三角形的中位线定理即可解决问题.
    (2)如图②中,结论仍然成立.连接AD,延长BE交AD于点H.由△ECB≌△DCA,推出BE=AD,∠DAC=∠EBC,即可推出BH⊥AD,由M、N、P分别为AE、BD、AB的中点,推出PM∥BE,PM=12BE,PN∥AD,PN=12AD,推出PM=PN,∠MPN=90°,可得BE=2PM=2×22MN=2MN.
    解:(1)如图①中,
    ∵AM=ME,AP=PB,
    ∴PM∥BE,PM=12BE,
    ∵BN=DN,AP=PB,
    ∴PN∥AD,PN=12AD,
    ∵AC=BC,CD=CE,
    ∴AD=BE,
    ∴PM=PN,
    ∵∠ACB=90°,
    ∴AC⊥BC,
    ∴∵PM∥BC,PN∥AC,
    ∴PM⊥PN,
    ∴△PMN的等腰直角三角形,
    ∴MN=2PM,
    ∴MN=2•12BE,
    ∴BE=2MN,
    故答案为BE=2MN.
    (2)如图②中,结论仍然成立.
    理由:连接AD,延长BE交AD于点H.
    ∵△ABC和△CDE是等腰直角三角形,
    ∴CD=CE,CA=CB,∠ACB=∠DCE=90°,
    ∵∠ACB﹣∠ACE=∠DCE﹣∠ACE,
    ∴∠ACD=∠ECB,
    ∴△ECB≌△DCA(AAS),
    ∴BE=AD,∠DAC=∠EBC,
    ∵∠AHB=180°﹣(∠HAB+∠ABH)
    =180°﹣(45°+∠HAC+∠ABH)
    =∠180°﹣(45°+∠HBC+∠ABH)
    =180°﹣90°
    =90°,
    ∴BH⊥AD,
    ∵M、N、P分别为AE、BD、AB的中点,
    ∴PM∥BE,PM=12BE,PN∥AD,PN=12AD,
    ∴PM=PN,∠MPN=90°,
    ∴BE=2PM=2×22MN=2MN.
    28.(12分)如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.
    (1)求抛物线的解析式;
    (2)点P是抛物线上的一动点,当时,求点P的坐标;
    (3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.
    ①求m与n之间的函数关系式;
    ②当m在什么范围时,符合条件的N点的个数有2个?
    【答案】(1);(2)或(3,)或(-2,-3);(3)①;②0<m<
    【解析】(1)利用一次函数求出A和B的坐标,结合点C坐标,求出二次函数表达式;
    (2)当点P在x轴上方时,点P与点C重合,当点P在x轴下方时,AP与y轴交于点Q,求出AQ表达式,联立二次函数,可得交点坐标,即为点P;
    (3)①过点C作CD⊥x轴于点D,证明△MNO∽△NCD,可得,整理可得结果;
    ②作以MC为直径的圆E,根据圆E与线段OD的交点个数来判断M的位置,即可得到m的取值范围.
    解:(1)∵直线与x轴交于点A,与y轴交于点B,
    令x=0,则y=2,令y=0,则x=4,
    ∴A(4,0),B(0,2),
    ∵抛物线经过B(0,2),,
    ∴,解得:,
    ∴抛物线的表达式为:;
    (2)当点P在x轴上方时,点P与点C重合,满足,
    ∵,
    ∴,
    当点P在x轴下方时,如图,AP与y轴交于点Q,
    ∵,
    ∴B,Q关于x轴对称,
    ∴Q(0,-2),又A(4,0),
    设直线AQ的表达式为y=px+q,代入,
    ,解得:,
    ∴直线AQ的表达式为:,联立得:
    ,解得:x=3或-2,
    ∴点P的坐标为(3,)或(-2,-3),
    综上,当时,点P的坐标为:或(3,)或(-2,-3);
    (3)①如图,∠MNC=90°,过点C作CD⊥x轴于点D,
    ∴∠MNO+∠CND=90°,
    ∵∠OMN+∠MNO=90°,
    ∴∠CND=∠OMN,又∠MON=∠CDN=90°,
    ∴△MNO∽△NCD,
    ∴,即,
    整理得:;
    ②如图,∵∠MNC=90°,
    以MC为直径画圆E,
    ∵,
    ∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),
    ∵点M在y轴正半轴,
    当圆E与线段OD相切时,
    有NE=MC,即NE2=MC2,
    ∵M(0,m),,
    ∴E(,),
    ∴=,
    解得:m=,
    当点M与点O重合时,如图,
    此时圆E与线段OD(不含O和D)有一个交点,
    ∴当0<m<时,圆E与线段OD有两个交点,
    故m的取值范围是:0<m<.
    【点睛】本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.
    相关试卷

    初中数学中考复习 专题27(四川省成都市专用)(原卷版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题27(四川省成都市专用)(原卷版)-2021年31个地区中考数学精品模拟试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题13(河南专用)(解析版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题13(河南专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共17页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题12(河北专用)(解析版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题12(河北专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map