浙教版八年级下册1.1 二次根式课后作业题
展开二次根式
一、单选题
1.下列各式中,一定是二次根式的为( )
A. B. C. D.
2.下列各式中,是二次根式有( )
①;②;③;④(x≤3);⑤;⑥; ⑦(ab≥0).
A.2个 B.3个 C.4个 D.5个
3.中的取值范围是( )
A. B. C. D.
4.若在实数范围内有意义,则的取值范围是( )
A. B. C. D.
5.给出下列结论:①在和之间;②中的取值范围是;③的平方根是;④;⑤.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
6.若式子有意义,则x的取值范围为( )
A.x≥2 B.x≠3 C.x≤2或x≠3 D.x≥2且x≠3
7.若是整数,则满足条件的自然数n共有( )个
A.1 B.2 C.3 D.4
8.在平面直角坐标系内有一点P(x,y),已知x,y满足+|3y+5|=0,则点P所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.若实数x,y满足等式,则的值是( )
A. B. C. D.
10.若,则化简 的结果是( )
A. B. C. D.
11.若式子有意义,则点P(a,b)在( )
A.坐标原点 B.第一象限 C.第二象限 D.第三象限
12.二次根式有意义时,的取值范围在数轴上如( )表示.
A. B.
C. D.
二、填空题
13.若是二次根式,则a的取值范围是______.
14.二次根式有意义的条件:_____.
15.已知,则yx=_____.
16.要使有意义,则x应满足 _____.
17.△ABC的三条边长、、满足,,则△ABC____直角三角形(填“是”或“不是”)
三、解答题
18.求下列二次根式中字母x的取值范围:
(1); (2);
(3).
19.已知a,b为有理数,且+=b+2,求ab的值.
20.已知.
(1)求的值;
(2)求的平方根.
21.已知二次根式.
(1)求x的取值范围;
(2)求当x=-2时,二次根式的值;
(3)若二次根式的值为零,求x的值.
22.已知a,b为等腰三角形的两边长,且满足b=4++3,求此三角形的周长.
参考答案
1.B
解:A、被开方数小于0,式子没有意义,故本选项不合题意;
B、是二次根式,故本选项符合题意;
C、不是二次根式,故本选项不合题意;
D、,当a<0时,二次根式无意义,故本选项不合题意.
故选:B.
2.B
解:①是二次根式,符合题意;②不是二次根式,不符合题意;③不是二次根式,不符合题意;④(x≤3)是二次根式,符合题意;⑤不一定是二次根式,不符合题意;⑥不是二次根式,不符合题意; ⑦(ab≥0)是二次根式,符合题意,
∴二次根式一共有3个,
故选B.
3.C
解:有意义,则,
解得:.
故选:C.
4.A
解:∵ 在实数范围内有意义,
∴ 3-x≥0 ,
∴ x≤3 ,
故选:A
5.A
解:①,
,
故①错误;
②因为二次根式中的取值范围是,故②正确;
③,9的平方根是,故③错误;
④,故④错误;
⑤∵,,
∴,即,故⑤错误;
综上所述:正确的有②,共1个,
故选:A.
6.D
解:由题意得:x﹣2≥0,且x﹣3≠0,
解得:x≥2,且x≠3,
故选:D.
7.D
解:∵要使有意义,
必须,解得
∵是整数,
∴n只能是3或8或11或12,
∴满足条件的n有4个
故选:D.
8.D
解:∵+|3y+5|=0,
∴,,
解得:,,
∴在第四象限,
故选:D.
9.C
解:∵,且,,
∴,.
∴,.
∴,y=2.
∴.
故选:C.
10.A
解:∵,
∴x-2<0,
∴=2-x
故选:A.
11.D
解:由题意可得:,,
∵,
∴a、b同号,
又∵,
∴,
∴a<0,b<0,
∴点P(a,b)在第三象限,
故选:D.
12.C
解:∵二次根式有意义,
∴2x+6≥0
解得x≥-3,
数轴表示如下:
故选C.
13.a<2
解:∵是二次根式,
∴,
解得a<2,
故答案为:a<2.
14.A≥0
解:略
15.16
解:由题意得,x-2≥0,2-x≥0,
解得,x=2,
则y=-4,
∴yx=(-4)2=16,
故答案为:16.
16.且##且
解:由题意得:,
解得且,
故答案为:且.
17.不是
解:∵,
∴,,
∴,
则,
∴,
∴△ABC不是直角三角形,
故答案为:不是.
18.(1)x≤ (2)全体实数 (3)x≥2且x≠6
解:(1),根据二次根式有意义的条件可得
3-2x
解得x≤ ,
∴x≤时,有意义;
(2) ,根据二次根式有意义的条件可得
,
因为,
∴x为全体实数时,有意义;
(3) ,根据二次根式有意义的条件可得 x-2, 解得x≥2,
根据分式有意义的条件可得 x-6,解得x,
∴x≥2且x≠6时,有意义.
故答案为(1)x≤ (2)全体实数 (3)x≥2且x≠6 .
19.
解:∵有意义,
∴,
∴,
∴,
∴,
∴.
20.(1);(2).
解:(1)由题意可得:,解得:;
(2)将代入可得:,解得:,
可得,
所以的平方根为.
21.(1)x≤6 (2)2 (3)x=6
解:(1)根据二次根式有意义的条件可得
,
解得x ,
∴x的取值范围是:x;
(2)当x= -2时,二次根式===2;
(3)由题意可得
=0,
解得x=6 .
故答案为(1)x≤6 (2)2 (3)x=6 .
22.三角形的周长10.
解:由题意,得,
解得a=2,
∴b=4 ,
当a为腰时,三边为2,2,4,由三角形三边关系定理可知,不能构成三角形,舍去,
当b为腰时,三边为4,4,2,符合三角形三边关系定理,
故三角形的三边长分别为4,4,2,
∴三角形的周长=4+4+2=10.
故答案为10.
初中数学浙教版八年级下册1.1 二次根式精品随堂练习题: 这是一份初中数学浙教版八年级下册<a href="/sx/tb_c12201_t7/?tag_id=28" target="_blank">1.1 二次根式精品随堂练习题</a>,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中浙教版1.1 二次根式课后练习题: 这是一份初中浙教版1.1 二次根式课后练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
浙教版八年级下册第一章 二次根式1.1 二次根式优秀课后复习题: 这是一份浙教版八年级下册第一章 二次根式1.1 二次根式优秀课后复习题,共5页。试卷主要包含了1《二次根式》,下列计算正确的是等内容,欢迎下载使用。