北师大版九年级下册4 二次函数的应用综合训练题
展开2020-2021学年九年级数学下册尖子生同步培优题典【北师大版】
专题2.7二次函数的应用(2)抛物型问题
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020•濮阳模拟)小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为( )
A.14 B.11 C.6 D.3
2.(2019秋•武昌区校级期中)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.若水面再下降1.5m,水面宽度为( )m.
A.4.5 B.2 C.2 D.2
3.(2019秋•汾阳市期末)如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面3米,则水流下落点B离墙的距离OB是( )
A.2.5米 B.3米 C.3.5米 D.4米
4.(2020•山西)竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为( )
A.23.5m B.22.5m C.21.5m D.20.5m
5.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
6.(2019秋•北京期末)小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是( )
x(分) | … | 13.5 | 14.7 | 16.0 | … |
y(米) | … | 156.25 | 159.85 | 158.33 | … |
A.32分 B.30分 C.15分 D.13分
7.(2020•永康市模拟)已知物体下落时间t与下落距离x成以下关系:xgt2,其中g与纬度的关系如图.若一只熊掉进一个洞深为19.664m的洞,下落时间刚好为2s,这只熊最有可能生活在哪个纬度附近( )
A.10° B.45° C.70° D.90°
8.(2020•长春模拟)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为( )
A.1米 B.米 C.2米 D.米
9.(2020•裕华区校级一模)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:
①小球在空中经过的路程是40m;
②小球运动的时间为6s;
③小球抛出3秒时,速度为0;
④当t=1.5s时,小球的高度h=30m.
其中正确的是( )
A.①④ B.①② C.②③④ D.②④
10.(2020•江汉区校级一模)如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用yx2+bx+c表示.在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是( )
A.2m B.4m C.4 m D.4m
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2020•长春模拟)如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽AB=1.6m时,涵洞顶点与水面的距离是2.4m.这时,离开水面1.5m处,涵洞的宽DE为 .
12.(2018秋•桃城区校级期中)廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为yx2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是 米.
13.(2019秋•巴南区校级月考)汽车在高速公路刹车后滑行的距离y(米)与行驶的时间x(秒)的函数关系式是y=﹣3x2+36x,汽车刹车后,会继续向前滑行直至静止,那么汽车静止前2秒内滑行的距离是 米.
14.(2020•长春模拟)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为 米.
15.(2019秋•建湖县期末)如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m,两侧距底面4m高处各有一盏灯,两灯间的水平距离为6m,则这个隧道入口的最大高度为 m(精确到0.1m).
16.(2020•李沧区模拟)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是 m.
17.(2020•长春模拟)如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为 m.
18.(2018秋•富裕县期末)如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB= m.
三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
19.(2020•顺德区三模)如图,隧道的截面由抛物线和长方形构成.长方形的长为16m,宽为6m,抛物线的最高点C离路面AA1的距离为8m.
(1)建立适当的坐标系,求出表示抛物线的函数表达式;
(2)一大型货车装载设备后高为7m,宽为4m.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?
20.(2019秋•西城区校级期中)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分.一名运动员起跳后,他的飞行路线如图所示,当他的水平距离为15m时,达到飞行的最高点C处,此时的竖直高度为45m,他落地时的水平距离(即OA的长)为60m,求这名运动员起跳时的竖直高度(即OB的长).
21.(2019秋•德城区校级期中)如图,隧道的截面由抛物线和矩形构成,AB=8m,BC=2m,隧道的最高点P位于AB的中点的正上方,且与AB的距离为4m.
(1)建立如图所示的坐标系,求图中抛物线的解析式;
(2)若隧道为单向通行,一辆高4米、宽3米的火车能否从隧道内通过?请说明理由.
22.(2020•市南区一模)如图,某小区在墙体OM上的点A处安装一抛物线型遮阳棚,现以地面和墙体分别为x轴和y轴建立直角坐标系,已知遮阳棚的高度y(m)与地面水平距离x(m)之间的关系式可以用yx2+bx+c表示,且抛物线经过B(2,),C(5,).
请根据以上信息,解答下列问题:
(1)求抛物线的函数关系式;
(2)求遮阳棚跨度ON的长;
(3)现准备在抛物线上一点E处,安装一直角形钢架GEF对遮阳棚进行加固(点F,G分别在x轴,y轴上,且EG∥x轴,EF∥y轴),现有库存10米的钢材是否够用?
23.(2019秋•溧阳市期末)如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)a= ,c= ;
(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?
(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
24.(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)
数学七年级下册6.3 实数习题: 这是一份数学七年级下册6.3 实数习题,文件包含7年级数学下册尖子生同步培优题典专题67实数与数轴问题教师版docx、7年级数学下册尖子生同步培优题典专题67实数与数轴问题学生版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
初中4 二次函数的应用课堂检测: 这是一份初中4 二次函数的应用课堂检测,文件包含2023年九年级数学下册尖子生同步培优题典专题28二次函数的应用-3销售问题-重难点培优-老师版docx、2023年九年级数学下册尖子生同步培优题典专题28二次函数的应用-3销售问题-重难点培优-学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
数学九年级下册4 二次函数的应用巩固练习: 这是一份数学九年级下册4 二次函数的应用巩固练习