四川省资阳市安岳县2022—2023学年 九年级上学期期末学业质量检测 ·数学试题 (含答案)
展开安岳县2022—2023学年度上期期末学业质量检测
九年级·数学
全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间共120分钟。
注意事项:
1.答题前,考生务必将自己的姓名、座位号、报名号(考号)写在答题卡上,并将条形码贴在答题卡上对应的虚线框内。同时在答题卡背面第4页顶端用2B铅笔涂好自己的座位号。
2.第Ⅰ卷每小题选出的答案不能答在试卷上,必须用2B铅笔在答题卡上把对应题目的答案标号徐黑,如需改动,用橡皮擦擦净后,再选涂其它答案。第Ⅱ卷必须用0.5mm黑色墨水签字笔书写在答题卡上的指定位置。不在指定区域作答的将无效。
3.考试结束,监考人员只将答题卡收回。
第Ⅰ卷(选择题 共40分)
一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)
1.下列计算正确的是
A. B. C. B.
2.下列事件为必然事件的是
A.篮球运动员在罚球线上投篮一次,未投中
B.在数轴上任取一点,则该点表示的数是有理数
C.经过有交通信号灯的路口,遇到绿灯
D.任意画一个四边形,其内角和为360
3.估算:的值应在
A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间
4.在平面直角坐标系中,将点M(-2,3)向右平移1个单位,再向下平移2个单位,得到的点的坐标为
A.(-1,1) B.(-1,5) C.(-3,1) D.(-3,5)
5.如图1,在△ABC中,D、E、F分别是AB、AC、BC的中点,若∠CFE=55°,则∠ADE的度数为
A.65° B.60° C.55° D.50°
6.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x,则可列方程为
A.100(1+x)2=121 B.100(1+x%)2=121
C.100(1+2x)=121 D.100+100(1+x)+100(1+x)2=121
7.如图2,在四边形ABCD中,AD‖BC,AC与BD相交于点O,若,则的值为
A. B. C. D.
8.已知实数a在数轴上的位置如图3所示,则化简:的结果为
A.2 B.-2 C.2a-6 D.-2a+6
9.如图4,在菱形ABCD中,∠ABC=60°,E是BC上一点,连结AE,将△ABE沿AE翻折,使点B落在点F处,连结BF、DF.若,则tan∠CDF的值为
A. B. C. D.
10.如图5,直线l的解析式为,点M1(0,1),M1N1⊥y轴交直线l于点N1;点M2为y轴上位于M1上方的一点,且M1M2=M1N1,M2N2⊥y轴交直线l于点N2;点M3为y轴上位于M2上方的一点,且M2M3=M2N2,M3N3⊥y轴交直线l于点N3,按此规律,线段N2022N2023的长为
A. B. C. D.
第Ⅱ卷(非选择题 共110分)
注意事项:
1.请用0.5毫米的黑色签字笔在答题卡相应区域作答,超出答案区域的答案无效。
2.试卷中横线及方框处是需要你在第Ⅱ卷答题卡上作答的内容或问题。请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果。
二、填空题.(本大题6个小题,每小题4分,共24分)
11.若代数式有意义,则x的取值范围为______________.
12.如图6所示的电路中,若任意闭合一个开关,则灯泡L1发光的概率是_____________.
13.若最简二次根式与是同类二次根式,则m =_____________.
14.若,且2a+b-c=6,则a+b+c的值为_____________.
15.如图7,在△ABC中,∠ACB=90°,CD为AB边上的中线,点G为△ABC的重心.若AC=12,BC=16,则DG的长为_____________.
16.如图8-1,在四边形ABCD中,若△ABC∽△ACD,则称AC为四边形ABCD关于点A的“靓线”.如图8-2,在□ABCD中,AB=5,E为AD的中点,F为BA延长线上一点,连结BE、CE、EF,若BE为四边形BCEF关于点B的“靓线”,CE=6,则AF的长为_____________.
三、解答题(本大题共8个小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.)
17.(本小题满分9分)
计算:(1) (2)
18.(本小题满分10分)
先化简,再求值:,其中.
19.(本小题满分10分)
如图9,已知:△ABC三个顶点的坐标分别为A(-2,-1),B(-5,-2),C(-1,-3).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以点O为位似中心,将△ABC放大为原
来的2倍,得到△A2B2C2,请在网格中画
出△A2B2C2,并写出点B2的坐标.
20.(本小题满分10分)
为了更好落实“双减”政策,增强课后服务的时效性,我县一中学定于每周四下午进行兴趣课“走班制”,开设了5类兴趣课(每位学生均选其一):A.音乐;B.体育;C.美术;D.信息技术;E.演讲.为了了解该校学生的参与情况,现随机抽取了部分学生进行调查,并将调查结果绘制成如图10所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)求此次调查的学生人数,并补全条形统
计图;
(2)求“C”类兴趣课所对应扇形的圆心角的度数;
(3)若“E”类兴趣班中有2名男生和3名女生,从中随机抽取2名参加县级演讲比赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
21.(本小题满分11分)
第19届亚运会原定于2022年9月10日至25日在杭州举行,其吉祥物“琼琼”、“莲莲”、“宸宸”组成的“江南忆”毛绒玩具套件,已成为杭州店销人气款.某商场销售这种毛绒玩具,平均每天可售出50套,每套盈利60元.但由于受疫情影响,此届亚运会将延期至2023年举行,于是该商场决定采取降价措施,以尽快减少库存,经调查发现,每套毛绒玩具每降价1元,平均每天可多售出2套.
(1)若每套毛绒玩具降价5元,则该商场平均每天可盈利多少元?
(2)若该商场计划平均每天盈利3500元,则每套毛绒玩具应降价多少元?
22.(本小题满分11分)
如图11,A、B两地是我国某海域一东西方向上的两个小岛.一天,一艘渔政船在C处巡逻时,测得小岛A在它的北偏东15°方向上,它沿西北方向航行海里后到达D处,测得小岛A在它的东北方向.
(1)求D处与小岛A的距离;
(2)若该渔政船在D处测得小岛B在它的北偏西53°方向上,求小岛
A、B之间的距离.
(参考数据:sin53°=,cos53°=,tan53°=)
23.(本小题满分12分)
定义:已知x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若x1<x2<0,且<4,则称这个方程为“限根方程”.如:一元二次方程x2+13x+30=0的两根为x1= -10,x2=-3,因-10<-3<0,,所以一元二次方程x2+13x+30=0为“限根方程”.
请阅读以上材料,回答下列问题:
(1)判断一元二次方程x2+9x+14=0是否为“限根方程”,并说明理由;
(2)若关于x的一元二次方程2x2+(k+7)x+k2+3=0是“限根方程”,且两根x1、x2满足x1+x2+x1x2=-1,求k的值;
(3)若关于x的一元二次方程x2+(1-m)x -m=0是“限根方程”,求m的取值范围.
24.(本小题满分13分)
【情境再现】
(1)如图12-1,在正方形ABCD中,点E、F分别在边AB、BC上,且DE⊥AF,求证:DE=AF.
【迁移应用】
(2)如图12-2,在矩形ABCD中,AD=kAB(k为常数),点E、F、G、H分别在矩形ABCD的边上,且EG⊥FH,求证:EG=kFH.
【拓展延伸】
(3)如图12-3,在四边形ABCD中,∠ABC=∠ADC=90°,∠BCD=60°,CD=4,点E、F分别在边AB、BC上,且CE⊥DF,,求AB的长.
2022—2023学年度第一学期期末义务教育九年级学情诊断
数学学科参考答案及评分意见
一、选择题(共10小题,每小题4分,共40分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
答案 | B | D | C | A | C | A | B | A | D | C |
二、填空题(共6小题,每小题4分,共24分)
11.x≥1 12. 13.3
14.18 15. 16.1.4
三、解答题(共86分)
17.解:(1)原式=····················································2分
=····························································4分
=-1···························································5分
(2)原式=·························································7分
=····························································8分
=····························································9分
18.解:原式= ························································3分
=··························································6分
=··························································8分
当时,原式=························································10分
19.解:(1)如下图····················································3分
(2)如下图························································8分
B2(10,4) ··························································10分
20.解:(1)此次调查的学生人数:15÷30%=50(人)··························1分
D:50-8-15-10-5=12(人),图略. ·······································3分
(2)10÷50×360°=72°·················································5分
(3)列表或树状图略. ················································8分
恰好抽到1名男性和1名女性的概率为:.···································10分
21.解:(1)(60-5)×(50+5×2)=3300(元)··································4分
答:该商场平均每天可盈利3300元.
(2)设每套毛绒玩具应降价x元,由题意得
(60-x)(50+2x)=3500··················································8分
解之,得:x1=10,x2=25··············································10分
∵该商场是为了尽快减少库存,∴x=25.
答:该商场每套毛绒玩具应降价25元. ····································11分
22.解:(1)由题意,得∠ADC=90°,∠ACD=60°······························1分
∴tan60°=··························································3分
∵,∴····························································4分
答:D处与小岛A的距离为海里.
(2)过点D作DE⊥AB于点E.
由题意得:∠ADE=45°,∠BDE=53°······································5分
∵,∴DE=AE=30····················································7分
在Rt△BDE中,tan53°==···············································9分
∴BE=×30=40······················································10分
∴AB=40+30=70(海里)··············································11分
答:小岛A、B之间的距离为70海里.
23.解:(1)(x+2)(x+7)=0,∴x1=-7,x2=-2··································1分
∵,∴此方程为“限根方程”. ··········································2分
(2)由根与系数的关系,得x1+x2=,x1x2=································3分
∵x1+x2+x1x2=-1,∴+=-1,∴k=2或-1····································4分
①当k=2时,x1=,x2=-1,∴<4,∴k=2符合题意·····························5分
②当k=-1时,x1=-2,x2=-1,∴=2,∴k=-1不合题意,舍去.∴k的值为2 ··········6分
(3)解此方程得:x= -1或m···········································7分
∵此方程为“限根方程”,∴△>0,且m<0,即(1-m)2+4m>0,∴(m+1)2 > 0,
∴m<0且m≠-1······················································8分
①当-1<m<0时,x1=-1,x2=m,∵<4,∴,∴·······························10分
②当m<-1时,x1= m,x2= -1,∵<4,∴,∴-4<m<-3
综上所述,m的取值范围为或-4<m<-3. ···································12分
24.(1)证明:∵四边形ABCD为正方形,∴AD =AB,∠EAD=∠B=90°··············1分
又∵DE⊥AF,∴∠ADE+∠DAF=90°=∠BAF+∠DAF,∴∠BAF=∠ADE··············2分
在△ADE和△BAF中, ,∴△ADE≌△DAF.∴DE=AF··························3分
(2)证明:过点D作DM∥EG交AB于点M,过点A作AN∥FH交BC于点N.
易证:四边形EGDM为平行四边形,∴EG∥DM且EG=DM,同理AN∥FH且AN=FH
·································································4分
由(1)同理可得∠ADM=∠BAN,∴△ADM ∽△BAN··························5分
∴·······························································6分
∴,∴EG=kFH······················································7分
(3)解:过点D作DG∥BC交BA的延长线于点G,过点C作CH⊥DG于点H.
易证:四边形BCHG为矩形,由(2)同理可得:····························8分
∵∠BCD=60°,∴∠DCH=30°,∵CD=4,∴DH=2,CH=························9分
∴GH==···························································10分
∴DG=····························································11分
又∵∠ADC=90°,∴∠ADG=∠DCH=30°,∴AG=1·····························12分
∴AB=BG-AG=······················································13分
四川省资阳市安岳县2023年九年级诊断考试数学试题(含答案): 这是一份四川省资阳市安岳县2023年九年级诊断考试数学试题(含答案),共24页。试卷主要包含了选择题,填空题.,解答题等内容,欢迎下载使用。
四川省资阳市安岳县2023-2024学年数学八上期末学业质量监测模拟试题含答案: 这是一份四川省资阳市安岳县2023-2024学年数学八上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在矩形个,在下列各数中,无理数是等内容,欢迎下载使用。
四川省资阳市安岳县李家初级中学2022-2023学年八年级上学期期中数学试题: 这是一份四川省资阳市安岳县李家初级中学2022-2023学年八年级上学期期中数学试题,共5页。