四川省资阳市安岳县2021—2022学年度学业质量检测七年级(下)数学期末试题(含答案)
展开这是一份四川省资阳市安岳县2021—2022学年度学业质量检测七年级(下)数学期末试题(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安岳县2021—2022学年度学业质量检测
七年级·数学
(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分150分,考试时间120分钟。)
题号 | Ⅰ | Ⅱ | 总分 | 总分人 | |||||||||
一 | 二 | 三 | |||||||||||
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |||||
得分 |
|
|
|
|
|
|
|
|
|
|
|
|
|
第Ⅰ卷(选择题 共40分)
得 分 | 评 卷 人 |
|
|
一、选择题(本大题10个小题,每小题4分,共40分。请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里.)
1.方程的解是( )
A.=5 B.=4 C.=3.5 D.=2
2.下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
3.已知一个正多边形的每个外角都为,则这个多边形的边数为( )
A.12 B.10 C.8 D.6
4.若是关于、的二元一次方程,则、的值分别是( )
A. B. C. D.
5.下列说法正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
6.如图1,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且,则△BEF的面积为( )
A.2 B.4 C.6 D.8
7.王实同学在解关于的方程时,误将“”看作“”,得到方程的解为,那么原方程的解为( )
A. B. C. D.
8.如图2,在直角△ABC中,,点D在AB边上,将△ABC沿CD折叠,使点B恰好落在AC边上的点E处,若,则的度数是( )
A. B. C. D.
9.小明在拼图时,发现8个大小一样的长方形,恰好可以拼成一个大的长方形(如图3-1所示),小红看见了说:“我也来试一试” .结果小红七拼八凑,拼成了一个正方形(如图3-2所示),中间还留下了一个小洞,恰好是边长为2的小正方形,则每个小长方形的面积为( )
A.60 B.72 C.54 D.48
10.如图4,一个运算程序,若输入x的值需要经过两次才能输出结果,则x的取值范围是( )
A. B. C. D.
第Ⅱ卷(非选择题 共110分)
得 分 | 评 卷 人 |
|
|
二、填空题(本大题6个小题,每小题4分,共24分.请把答案直接填在题中的横线上.)
11.若是关于的方程的解,则的值为 .
12.如图5,△ABC沿线段BA方向平移得到△DEF,若AB=9,AE=3,则平移的距离为 .
13.若关于的不等式组的解集为,则的值为 .
14.如图6,△OAD≌△OBC,且,,则 .
15.定义新运算“”:对于任意有理数、都有,等式右边是通常的加法、减法及乘法运算.比如,若,则= .
16.下列说法:①若线段AP,BP,AB满足AP+BP>AB,则P点一定在线段AB外;②用两种正多边形铺满地面,正八边形不能与正方形匹配;③已知一个等腰三角形两边的长分别为4与6,则该三角形的周长一定为16;④如图7所示的图形绕着中心旋转或或后能与自身重合.其中正确的有 . (填序号)
三、解答题(本大题共9个小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.)
得 分 | 评 卷 人 |
|
|
17.(本小题满分10分)
解下列方程(组):
(1) (2)
得 分 | 评 卷 人 |
|
|
18.(本小题满分9分)
解不等式组,并求不等式组的整数解.
得 分 | 评 卷 人 |
|
|
19.(本小题满分9分)
如图8,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.
(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;
(2)请画出△A2B2C2,使△A2B2C2与△ABC关于点O成中心对称;
(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.
得 分 | 评 卷 人 |
|
|
20.(本小题满分9分)
如图9,在△ABC中,点D在BC上,点E在AC上,AD交BE于点F.已知EG//AD交BC于点G,EH⊥BE,交BC于点H,∠HEG=52°.
(1)求∠BFD的度数;
(2)若∠BAD=∠EBC,∠C=46°,求∠BAC的度数;
得 分 | 评 卷 人 |
|
|
21.(本小题满分9分)
已知关于x的方程组和有相同的解,求、的值.
得 分 | 评 卷 人 |
|
|
22.(本小题满分10分)
如图10,在四边形ABCD中,,CE平分∠BCD交AB于点E,连结DE.
(1)若,,求的度数;
(2)若,试说明.
得 分 | 评 卷 人 |
|
|
23.(本小题满分10分)
类型 价格 | A型 | B型 |
进价(元/盏) | 35 | 65 |
标价(元/盏) | 50 | 100 |
某商场用2700元购进A、B两种新型节能日光灯共60盏,这两种日光灯的进价、标价如下表:
(1)求这两种日光灯各购进多少盏?
(2)若A型日光灯按标价的9折出售,要使这批日光灯全部售出后商场获得不少于700元的利润,则B型日光灯应按标价的至少几折出售?
得 分 | 评 卷 人 |
|
|
24.(本小题满分10分)
我们定义:如果两个一元一次不等式有公共整数解,那么称这两个不等式互为“云不等式”,其中一个不等式称为另一个不等式的“云不等式”.
(1)在不等式:①,②,③中,不等式 的“云不等式”是 (填序号);
(2)若关于的不等式不是的“云不等式”,求的取值范围;
(3)若,关于的不等式与不等式互为“云不等式”,求的取值范围.
得 分 | 评 卷 人 |
|
|
25.(本小题满分10分)
如图11-1,在直角△ABC与直角△BCD中,∠ACB=∠DCB=90°,∠A=30°,∠D=45°,固定△BCD,将△ABC绕点C按顺时针方向旋转一个大小为的角()得到△ACB,.
(1)在旋转过程中,当B,C⊥BD时,= °;
(2)如图11-2,旋转过程中,若边AB,与边BC相交于点E,与BD相交于点F,连结AD,设∠DAB,=,∠BCB,=,∠ADB=,试探究的值是否发生变化,若不变化请求出这个值;若变化,请说明理由;
安岳县2021—2022学年度学业质量检测
七年级·数学答案
一、选择题(共10小题,每小题4分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
答案 | D | B | B | C | D | B | C | C | A | C |
二、填空题(共6小题,每小题4分)
11.1 12.6 13.5
14. 15.3 16.①④
三、解答题(共9小题)
17.解:(1)·························································5分·······················
(2) ································································10分
18.解:解不等式,得 ··················································6分·······················
所以原不等式组的解为. ···················································7分·······················
故此不等式组的整数解为:-3,-2,-1,0·······························9分·······················
19.解:(1)如答图1所示:ΔA1B1C1,即为所求······························3分·······················
(2)如图所示:ΔA2B2C2,即为所求········································6分·······················
(3)如图所示:ΔA1B1C1与ΔA2B2C2成轴对称,································7分·······················
直线、即为所求·························································9分·······················
20.解:(1)∵EH⊥BE,∴∠BEH=90°,···································1分
∵∠HEG=52°,∴∠BEG=38°,···········································2分
又∵EG//AD,∴∠BFD=∠BEG=38°;·······································4分
(2)∵∠BFD=∠BAD+∠ABE,∠BAD=∠EBC,·································5分
∴∠BFD=∠EBC+∠ABE=∠ABC=38°,········································7分
∵∠C=46°,∴∠BAC=180°-∠ABC-∠C=180°-38°-46°=96°.·······················9分
21.解:由题意得:,解得,··············································4分
将代入得,解得,·······················································9分
22.解:(1)∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,
∴∠A+∠BCD=180°,······················································1分
∵∠A=50°,∴∠BCD=130°,················································2分
∵CE平分∠BCD,∴∠BCE=∠BCD=65°,·······································3分
∵∠B=80°,∴∠BEC=180°-∠BCE-∠B=180°-65°-80°=35°;··························5分
(2)由(1)知,∠A+∠BCD=180°,
∴∠A+∠BCE+∠DCE=180°,················································6分
∵∠CDE+∠DCE+∠1=180°,∠1=∠A,
∴∠BCE=∠CDE,························································8分
∵CE平分∠BCD,∴∠BCE=∠DCE,··········································9分
∴∠CDE=∠DCE.·························································10分
23.解:(1)设购A型日光灯x盏,购B型日光灯y盏,由题意得
·····································································3分·······················
解得:,
答:购A型日光灯40盏,购B型日光灯20盏.·····································5分
(2)设B型日光灯应按标价的m折出售,由题意得
,···································································8分
得m≥8.
答:B型日光灯应按标价的至少8折出售·······································10分·······················
24.解:(1)①②;······················································2分
(2)解不等式可得,
解不等式可得,·························································4分
∵关于的不等式不是的“云不等式”,
∴,解得;·····························································6分
(3)当时,即时,不等式的解集为,不等式的解集为,···························8分
∵关于的不等式与不等式互为“云不等式”,
∴,即,∴;····························································10分
25.解:(1)45;······················································3分·······················
(2)结论:的值不变,理由如下:··········································4分·······················
如图11-2中,在直角ΔABC与直角ΔBCD中,∠ACB=∠DCB=90°,∠A=30°,∠D=45°,
∴∠B=45°,∴∠B,=60°,··················································5分·······················
∵∠EFB是ΔDFA的一个外角,
∴∠EFB=∠DAB,+∠ADB,∠EFB=①,·······································6分·······················
又∵∠BEF是ΔCB,E的一个外角,
∴∠BEF=∠BCB,+∠B,,∴∠BEF=②,······································7分·······················
∴①+②得:∠EFB+∠BEF=·················································8分·······················
又在ΔEFB中,∠B=45°,
∴∠EFB+∠BEF=180°-45°=135°,············································9分·······················
∴=135°,∴····························································10分·······················
相关试卷
这是一份四川省资阳市安岳县2023-2024学年数学八上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在矩形个,在下列各数中,无理数是等内容,欢迎下载使用。
这是一份四川省资阳安岳县联考2022-2023学年七下数学期末质量检测模拟试题含答案,共6页。试卷主要包含了下列函数中y是x的一次函数的是等内容,欢迎下载使用。
这是一份2022-2023学年四川省资阳市安岳县七年级(下)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。