重庆市长寿区川维片区2022年中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B.
C. D.
2.分式的值为0,则x的取值为( )
A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1
3.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为( )
A.4.4×106 B.44×105 C.4×106 D.0.44×107
4.4的平方根是( )
A.16 B.2 C.±2 D.±
5.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )
A.3,-1 B.1,-3 C.-3,1 D.-1,3
6.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
7.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
A.16 B.18 C.20 D.24
8.计算(﹣)﹣1的结果是( )
A.﹣ B. C.2 D.﹣2
9.到三角形三个顶点的距离相等的点是三角形( )的交点.
A.三个内角平分线 B.三边垂直平分线
C.三条中线 D.三条高
10.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A.AB=AD B.AC平分∠BCD
C.AB=BD D.△BEC≌△DEC
二、填空题(共7小题,每小题3分,满分21分)
11.安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_____.
12.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
13.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.
14.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.
15.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.
16.因式分解:x2﹣10x+24=_____.
17.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.
三、解答题(共7小题,满分69分)
18.(10分)解不等式组:.
19.(5分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;
(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)若线段FG∥x轴,则此段时间,甲机器人的速度为 米/分;
(4)求A、C两点之间的距离;
(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.
20.(8分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.
(1)求证:AE=BF;(2)若BE=,AG=2,求正方形的边长.
21.(10分)如图,以△ABC的一边AB为直径作⊙O, ⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.
(1) 求证:DE⊥AC;
(2) 连结OC交DE于点F,若,求的值.
22.(10分)阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.
23.(12分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
24.(14分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.
详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;
B、此图形不是中心对称图形,是轴对称图形,故此选项错误;
C、此图形是中心对称图形,也是轴对称图形,故此选项错误;
D、此图形不是中心对称图形,是轴对称图形,故此选项错误.
故选A.
点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.
2、A
【解析】
分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
∵原式的值为2,
∴,
∴(x-2)(x+3)=2,即x=2或x=-3;
又∵|x|-2≠2,即x≠±2.
∴x=-3.
故选:A.
【点睛】
此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
3、A
【解析】4400000=4.4×1.故选A.
点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
4、C
【解析】
试题解析:∵(±2)2=4,
∴4的平方根是±2,
故选C.
考点:平方根.
5、A
【解析】
根据题意可得方程组,再解方程组即可.
【详解】
由题意得:,
解得:,
故选A.
6、D
【解析】
试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
7、B
【解析】
【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.
【详解】∵EF∥BC,
∴△AEF∽△ABC,
∵AB=3AE,
∴AE:AB=1:3,
∴S△AEF:S△ABC=1:9,
设S△AEF=x,
∵S四边形BCFE=16,
∴,
解得:x=2,
∴S△ABC=18,
故选B.
【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.
8、D
【解析】
根据负整数指数幂与正整数指数幂互为倒数,可得答案.
【详解】
解: ,
故选D.
【点睛】
本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.
9、B
【解析】
试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.
解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选B.
点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.
10、C
【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,
∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
∴Rt△BCE≌Rt△DCE(HL).
∴选项ABD都一定成立.
故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据事件的描述可得到描述正确的有①②③⑥,即可得到答案.
【详解】
∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,
∴抽到内容描述正确的纸条的概率是,
故答案为:.
【点睛】
此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.
12、1
【解析】
根据题意得x1+x2=2,x1x2=﹣1,
所以x1+x2﹣x1x2=2﹣(﹣1)=1.
故答案为1.
13、.
【解析】
作DH⊥AE于H, 根据勾股定理求出AB, 根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.
【详解】
解:如图
作DH⊥AE于H,
AOB=, OA=2, OB=1,AB=,
由旋转的性质可知
OE=OB=1,DE=EF=AB=,
可得△DHE≌△BOA,
DH=OB=1,
阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积
==,
故答案:.
【点睛】
本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.
14、14s或38s.
【解析】
试题解析:分两种情况进行讨论:
如图:
旋转的度数为:
每两秒旋转
如图:
旋转的度数为:
每两秒旋转
故答案为14s或38s.
15、2+4
【解析】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
【详解】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
∵CH=EF,CH∥EF,
∴四边形EFHC是平行四边形,
∴EC=FH,
∵FA=FC,
∴EC+CF=FH+AF=AH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵CH∥DB,
∴AC⊥CH,
∴∠ACH=90°,
在Rt△ACH中,AH==4,
∴△EFC的周长的最小值=2+4,
故答案为:2+4.
【点睛】
本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.
16、(x﹣4)(x﹣6)
【解析】
因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.
【详解】
x2﹣10x+24= x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)
【点睛】
本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.
17、
【解析】
分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.
详解:由勾股定理得:= ,即(0,4).
矩形ABCD的边AB在x轴上,∴四边形是平行四边形,
A=B, =AB=4-(-3)=7, 与的纵坐标相等,∴(7,4),故答案为(7,4).
点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.
三、解答题(共7小题,满分69分)
18、﹣4≤x<1
【解析】
先求出各不等式的
【详解】
解不等式x﹣1<2,得:x<1,
解不等式2x+1≥x﹣1,得:x≥﹣4,
则不等式组的解集为﹣4≤x<1.
【点睛】
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
19、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
(3)由图可知甲、乙速度相同;
(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
【详解】
解:(1)由图象可知,A、B两点之间的距离是70米,
甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
(2)设线段EF所在直线的函数解析式为:y=kx+b,
∵1×(95﹣60)=35,
∴点F的坐标为(3,35),
则,解得,
∴线段EF所在直线的函数解析式为y=35x﹣70;
(3)∵线段FG∥x轴,
∴甲、乙两机器人的速度都是60米/分;
(4)A、C两点之间的距离为70+60×7=490米;
(5)设前2分钟,两机器人出发x分钟相距21米,
由题意得,60x+70﹣95x=21,解得,x=1.2,
前2分钟﹣3分钟,两机器人相距21米时,
由题意得,35x﹣70=21,解得,x=2.1.
4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
设线段GH所在直线的函数解析式为:y=kx+b,则,
,解得,
则直线GH的方程为y=x+,
当y=21时,解得x=4.6,
答:两机器人出发1.2分或2.1分或4.6分相距21米.
【点睛】
本题考查了一次函数的应用,读懂图像是解题关键..
20、(1)见解析;(2)正方形的边长为.
【解析】
(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;
(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠BAE+∠AEB=90°,
∵AE⊥BF,垂足为G,
∴∠CBF+∠AEB=90°,
∴∠BAE=∠CBF,
在△ABE与△BCF中,
,
∴△ABE≌△BCF(ASA),
∴AE=BF;
(2)解:∵四边形ABCD为正方形,
∴∠ABC=90°,
∵AE⊥BF,
∴∠BGE=∠ABE=90°,
∵∠BEG=∠AEB,
∴△BGE∽△ABE,
∴=,
即:BE2=EG•AE,
设EG=x,则AE=AG+EG=2+x,
∴()2=x•(2+x),
解得:x1=1,x2=﹣3(不合题意舍去),
∴AE=3,
∴AB===.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.
21、(1)证明见解析(2)
【解析】
(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.
(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.
【详解】
解:(1)连接OD . ∵DE是⊙O的切线,
∴DE⊥OD,即∠ODE=90° .
∵AB是⊙O的直径,
∴O是AB的中点.
又∵D是BC的中点, .
∴OD∥AC .
∴∠DEC=∠ODE= 90° .
∴DE⊥AC .
(2)连接AD . ∵OD∥AC,
∴.
∵AB为⊙O的直径, ∴∠ADB= ∠ADC =90° .
又∵D为BC的中点,
∴AB=AC.
∵sin∠ABC==,
设AD= 3x , 则AB=AC=4x, OD= 2x.
∵DE⊥AC, ∴∠ADC= ∠AED= 90°.
∵∠DAC= ∠EAD, ∴△ADC∽△AED.
∴.
∴.
∴. ∴.
∴.
22、 (1) =x2+7+ (2) 见解析
【解析】
(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;
(2)原式分子变形后,利用不等式的性质求出最小值即可.
【详解】
(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,
可得 ,
解得:a=7,b=1,
则原式=x2+7+;
(2)由(1)可知,=x2+7+ .
∵x2≥0,∴x2+7≥7;
当x=0时,取得最小值0,
∴当x=0时,x2+7+最小值为1,
即原式的最小值为1.
23、(1)补图见解析;(2)27°;(3)1800名
【解析】
(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;
(2)用360°乘以对应的比例即可求解;
(3)用总人数乘以对应的百分比即可求解.
【详解】
(1)抽取的总人数是:10÷25%=40(人),
在B类的人数是:40×30%=12(人).
;
(2)扇形统计图扇形D的圆心角的度数是:360×=27°;
(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).
考点:条形统计图、扇形统计图.
24、 (1) k的值为3,m的值为1;(2)0
分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.
(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;
②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.
详解:(1)将A(3,m)代入y=x-2,
∴m=3-2=1,
∴A(3,1),
将A(3,1)代入y=,
∴k=3×1=3,
m的值为1.
(2)①当n=1时,P(1,1),
令y=1,代入y=x-2,
x-2=1,
∴x=3,
∴M(3,1),
∴PM=2,
令x=1代入y=,
∴y=3,
∴N(1,3),
∴PN=2
∴PM=PN,
②P(n,n),
点P在直线y=x上,
过点P作平行于x轴的直线,交直线y=x-2于点M,
M(n+2,n),
∴PM=2,
∵PN≥PM,
即PN≥2,
∴0<n≤1或n≥3
点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.
重庆市长寿区川维片区2023-2024学年数学八年级第一学期期末质量跟踪监视试题【含解析】: 这是一份重庆市长寿区川维片区2023-2024学年数学八年级第一学期期末质量跟踪监视试题【含解析】,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列图标中是轴对称图形的是,如果分式的值为0,那么x的值是,下列运算正确的是等内容,欢迎下载使用。
重庆市长寿区川维片区2023年数学八年级第一学期期末统考试题【含解析】: 这是一份重庆市长寿区川维片区2023年数学八年级第一学期期末统考试题【含解析】,共22页。试卷主要包含了若点A在y轴上,则点B位于等内容,欢迎下载使用。
重庆市长寿区川维片区2023年八年级数学第一学期期末学业水平测试试题【含解析】: 这是一份重庆市长寿区川维片区2023年八年级数学第一学期期末学业水平测试试题【含解析】,共17页。试卷主要包含了因式分解x2+mx﹣12=,已知不等式组的解集为,则的值为,下列长度的线段能组成三角形的是,下列关于一次函数等内容,欢迎下载使用。