|试卷下载
搜索
    上传资料 赚现金
    2022年重庆市九龙坡区杨家坪中学中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022年重庆市九龙坡区杨家坪中学中考数学模拟预测题含解析01
    2022年重庆市九龙坡区杨家坪中学中考数学模拟预测题含解析02
    2022年重庆市九龙坡区杨家坪中学中考数学模拟预测题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年重庆市九龙坡区杨家坪中学中考数学模拟预测题含解析

    展开
    这是一份2022年重庆市九龙坡区杨家坪中学中考数学模拟预测题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )

    A. B. C. D.
    2.一次函数的图像不经过的象限是:( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
    A.140元 B.150元 C.160元 D.200元
    4.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

    A. B. C. D.
    5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    6.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    7.对于反比例函数,下列说法不正确的是(  )
    A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限
    C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小
    8.矩形具有而平行四边形不具有的性质是(  )
    A.对角相等 B.对角线互相平分
    C.对角线相等 D.对边相等
    9.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )

    A.线段DB绕点D顺时针旋转一定能与线段DC重合
    B.线段DB绕点D顺时针旋转一定能与线段DI熏合
    C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
    D.线段ID绕点I顺时针旋转一定能与线段IB重合
    10.下列代数运算正确的是(  )
    A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3•x2=x5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.因式分解:-3x2+3x=________.
    12.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.

    13.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.

    14.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.
    15.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_____℃.
    16.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.

    三、解答题(共8题,共72分)
    17.(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

    18.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
    (1)求反比例函数和一次函数的解析式;
    (2)求直线AB与x轴的交点C的坐标及△AOB的面积;
    (3)求方程的解集(请直接写出答案).

    19.(8分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.
    (1)连接BC,求证:BC=OB;
    (2)E是中点,连接CE,BE,若BE=2,求CE的长.

    20.(8分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
    21.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
    (1)求函数y=kx+b和y=的表达式;
    (2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

    22.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
    (1)求一次函数y=kx+b的关系式;
    (2)结合图象,直接写出满足kx+b>的x的取值范围;
    (3)若点P在x轴上,且S△ACP=,求点P的坐标.

    23.(12分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
    24.(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
    (2)先化简,再求值:÷(2+),其中a= .



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.
    【详解】
    解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,

    此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,
    ∵AB=10,AC=8,BC=6,
    ∴AB2=AC2+BC2,
    ∴∠C=10°,
    ∵∠OP1B=10°,
    ∴OP1∥AC
    ∵AO=OB,\
    ∴P1C=P1B,
    ∴OP1=AC=4,
    ∴P1Q1最小值为OP1-OQ1=1,
    如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
    P2Q2最大值=5+3=8,
    ∴PQ长的最大值与最小值的和是1.
    故选:C.
    【点睛】
    本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.
    2、C
    【解析】
    试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.
    答案为C
    考点:一次函数的图像
    3、B
    【解析】
    试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
    故选B.
    考点:一元一次方程的应用
    4、D
    【解析】
    连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
    【详解】
    解:连接BD,BE,BO,EO,

    ∵B,E是半圆弧的三等分点,
    ∴∠EOA=∠EOB=∠BOD=60°,
    ∴∠BAD=∠EBA=30°,
    ∴BE∥AD,
    ∵ 的长为 ,

    解得:R=4,
    ∴AB=ADcos30°= ,
    ∴BC=AB=,
    ∴AC=BC=6,
    ∴S△ABC=×BC×AC=××6=,
    ∵△BOE和△ABE同底等高,
    ∴△BOE和△ABE面积相等,
    ∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
    故选:D.
    【点睛】
    本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
    5、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    6、C
    【解析】
    根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.
    【详解】
    ∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),
    ∴设旋转后的函数解析式为y=﹣x﹣1,
    在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,
    即一次函数y=﹣x+2与x轴交点为(4,1).
    一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,
    即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).
    ∴m==1,
    故选:C.
    【点睛】
    本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.
    7、C
    【解析】
    由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,
    故选C.
    考点:反比例函数
    【点睛】
    本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化
    8、C
    【解析】
    试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
    解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
    平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
    ∴矩形具有而平行四边形不一定具有的性质是对角线相等,
    故选C.
    9、D
    【解析】
    解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
    ∴=,∴BD=CD,故A正确,不符合题意;
    ∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
    故选D.
    点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
    10、D
    【解析】
    分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.
    【详解】
    解:A. (x+1)2=x2+2x+1,故A错误;
    B. (x3)2=x6,故B错误;
    C. (2x)2=4x2,故C错误.
    D. x3•x2=x5,故D正确.
    故本题选D.
    【点睛】
    本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-3x(x-1)
    【解析】
    原式提取公因式即可得到结果.
    【详解】
    解:原式=-3x(x-1),
    故答案为-3x(x-1)
    【点睛】
    此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.
    12、50
    【解析】
    试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.
    试题解析:连结EF,如图,

    ∵四边形ABCD内接于⊙O,
    ∴∠A+∠BCD=180°,
    而∠BCD=∠ECF,
    ∴∠A+∠ECF=180°,
    ∵∠ECF+∠1+∠2=180°,
    ∴∠1+∠2=∠A,
    ∵∠A+∠AEF+∠AFE=180°,
    即∠A+∠AEB+∠1+∠2+∠AFD=180°,
    ∴∠A+80°+∠A=180°,
    ∴∠A=50°.
    考点:圆内接四边形的性质.
    13、2.1.
    【解析】
    根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.
    【详解】
    由题意可得,
    甲车到达C地用时4个小时,
    乙车的速度为:200÷(3.1﹣1)=80km/h,
    乙车到达A地用时为:(200+240)÷80+1=6.1(小时),
    当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),
    故答案为:2.1.
    【点睛】
    本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    14、20π
    【解析】
    利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.
    【详解】
    底面直径为8,底面半径=4,底面周长=8π,
    由勾股定理得,母线长==5,
    故圆锥的侧面积=×8π×5=20π,
    故答案为:20π.
    【点睛】
    本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.
    15、3
    【解析】
    用南部气温减北部的气温,根据“减去一个数等于加上这个数的相反数”求出它们的差就是高出的温度.
    【详解】
    解:(﹣3)﹣(﹣6)=﹣3+6=3℃.
    答:当天南部地区比北部地区的平均气温高3℃,故答案为:3.
    【点睛】
    本题考查了有理数的减法运算法则,减法运算法则:减去一个数等于加上这个数的相反数.
    16、4
    【解析】
    连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.
    【详解】
    解:连接OP、OB,

    ∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,
    图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,
    又∵点P是半圆弧AC的中点,OA=OC,
    ∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,
    ∴两部分面积之差的绝对值是
    点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
    【解析】
    (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
    (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,,.
    ∵点、分别是、的中点,
    ∴,.
    ∴.
    在和中,

    ∴.
    解:当四边形是菱形时,四边形是矩形.

    证明:∵四边形是平行四边形,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∵四边形是菱形,
    ∴.
    ∵,
    ∴.
    ∴,.
    ∵,
    ∴.
    ∴.
    即.
    ∴四边形是矩形.
    【点睛】
    本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
    18、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
    【解析】
    试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
    (2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
    (3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
    试题解析:(1)∵B(2,﹣4)在y=上,
    ∴m=﹣1.
    ∴反比例函数的解析式为y=﹣.
    ∵点A(﹣4,n)在y=﹣上,
    ∴n=2.
    ∴A(﹣4,2).
    ∵y=kx+b经过A(﹣4,2),B(2,﹣4),
    ∴,
    解之得.
    ∴一次函数的解析式为y=﹣x﹣2.
    (2)∵C是直线AB与x轴的交点,
    ∴当y=0时,x=﹣2.
    ∴点C(﹣2,0).
    ∴OC=2.
    ∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
    (3)不等式的解集为:﹣4<x<0或x>2.
    19、(2)见解析;(2)2+.
    【解析】
    (2)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;
    (2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.
    【详解】
    (2)证明:连接OC,

    ∵AB为⊙O直径,
    ∴∠ACB=90°,
    ∵CD为⊙O切线
    ∴∠OCD=90°,
    ∴∠ACO=∠DCB=90°﹣∠OCB,
    ∵CA=CD,
    ∴∠CAD=∠D.
    ∴∠COB=∠CBO.
    ∴OC=BC.
    ∴OB=BC;
    (2)连接AE,过点B作BF⊥CE于点F,
    ∵E是AB中点,
    ∴,
    ∴AE=BE=2.
    ∵AB为⊙O直径,
    ∴∠AEB=90°.
    ∴∠ECB=∠BAE=45°,,
    ∴.
    ∴CF=BF=2.
    ∴.
    ∴.
    【点睛】
    本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    20、(1);(2)-1
    【解析】
    (1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;
    (2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.
    【详解】
    解:(1)
    ①+②得,.
    将时代入①得,,
    ∴.
    (2)设“□”为a,
    ∵x、y是一对相反数,
    ∴把x=-y代入x-y=4得:-y-y=4,
    解得:y=-2,
    即x=2,
    所以方程组的解是,
    代入ax+y=-8得:2a-2=-8,
    解得:a=-1,
    即原题中“□”是-1.
    【点睛】
    本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.
    21、(1) ,y=2x﹣1;(2).
    【解析】
    (1)利用待定系数法即可解答;
    (2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
    【详解】
    解:(1)把点A(4,3)代入函数得:a=3×4=12,
    ∴.
    ∵A(4,3)
    ∴OA=1,
    ∵OA=OB,
    ∴OB=1,
    ∴点B的坐标为(0,﹣1)
    把B(0,﹣1),A(4,3)代入y=kx+b得:
    ∴y=2x﹣1.
    (2)作MD⊥y轴于点D.

    ∵点M在一次函数y=2x﹣1上,
    ∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)
    ∵MB=MC,
    ∴CD=BD
    ∴8-(2x-1)=2x-1+1
    解得:x=
    ∴2x﹣1= ,
    ∴点M的坐标为 .
    【点睛】
    本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
    22、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
    【解析】
    (1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
    (1)根据函数图像判断即可;
    (3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
    【详解】
    (1)∵点A(m,3),B(-6,n)在双曲线y=上,
    ∴m=1,n=-1,
    ∴A(1,3),B(-6,-1).
    将(1,3),B(-6,-1)带入y=kx+b,
    得:,解得,.
    ∴直线的解析式为y=x+1.
    (1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
    (3)当y=x+1=0时,x=-4,
    ∴点C(-4,0).
    设点P的坐标为(x,0),如图,

    ∵S△ACP=S△BOC,A(1,3),B(-6,-1),
    ∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
    解得:x1=-6,x1=-1.
    ∴点P的坐标为(-6,0)或(-1,0).
    【点睛】
    本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
    23、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
    24、(1)5+;(2)
    【解析】
    试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;
    (2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.
    试题解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;
    (2)原式==,
    当a=时,原式==.

    相关试卷

    重庆市九龙坡区杨家坪中学2023-2024学年数学八上期末综合测试试题【含解析】: 这是一份重庆市九龙坡区杨家坪中学2023-2024学年数学八上期末综合测试试题【含解析】,共20页。试卷主要包含了若x2﹣2等内容,欢迎下载使用。

    重庆市九龙坡区杨家坪中学2022-2023学年数学九上期末检测试题含解析: 这是一份重庆市九龙坡区杨家坪中学2022-2023学年数学九上期末检测试题含解析,共21页。试卷主要包含了答题时请按要求用笔,抛物线y=22﹣1的顶点坐标是等内容,欢迎下载使用。

    2022-2023学年重庆市九龙坡区杨家坪中学七年级(下)期中数学试卷(含解析): 这是一份2022-2023学年重庆市九龙坡区杨家坪中学七年级(下)期中数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map