|课件下载
搜索
    上传资料 赚现金
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件
    立即下载
    加入资料篮
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件01
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件02
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件03
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件04
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件05
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件06
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件07
    1.4.1.3《用空间向量研究直线、平面的位置关系》课件08
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学1.4 空间向量的应用优质ppt课件

    展开
    这是一份高中数学1.4 空间向量的应用优质ppt课件,共30页。PPT课件主要包含了即时巩固,证明线线垂直问题,证明线面垂直问题,证明面面垂直问题,所以PM⊥AM,分三种情况等内容,欢迎下载使用。

    1.能用向量语言描述直线与直线、直线与平面、平面与平面的垂直关系.2.熟练掌握用方向向量、法向量证明线线、线面、面面间的垂直关系.核心素养:数学推理、数学运算.
    线线、线面、面面垂直的向量表示
    线线垂直:设u1,u2分别是直线l1,l2的方向向量,则l1⊥l2⇔u1⊥u2⇔u1·u2=0.
    线面垂直:设u是直线l的方向向量,n是平面α的法向量,l⊄α,则l⊥α⇔u∥n⇔∃λ∈R,使得u=λn.
    面面垂直:设n1,n2 分别是平面α,β的法向量,则α⊥β⇔n1⊥n2⇔n1·n2=0.
    1.若直线l的方向向量a=(1,0,2),平面α的法向量为n=(-2,0,-4),则( )A.l∥α B.l⊥α C.l⊂α D.l与α斜交
    解析 ∵n=-2a,∴a∥n,即l⊥α.
    2.已知两不重合直线l1和l2的方向向量分别为a=(3λ+1,0,2λ),b=(1,λ-1,λ),若l1⊥l2,则λ的值为( )
    3.(多选)下列命题中,正确的命题为( )A.若n1,n2分别是平面α,β的法向量,则n1∥n2⇔α∥βB.若n1,n2分别是平面α,β的法向量,则α⊥β⇔n1·n2=0C.若n是平面α的法向量,a是直线l的方向向量,若l与平面α垂直,则n∥aD.若两个平面的法向量不垂直,则这两个平面不垂直
    解析 A中平面α,β可能平行,也可能重合,结合平面法向量的概念,可知BCD正确.
    4.平面α与平面β垂直,平面α与平面β的法向量分别为u=(-1,0,5),v=(t,5,1),则t的值为________.
    解析 ∵平面α与平面β垂直,∴平面α的法向量u与平面β的法向量v垂直,∴u·v=0,即-1×t+0×5+5×1=0,解得t=5.
    例1 如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.求证:EF⊥BC.
    证明 由题意,以点B为坐标原点,在平面DBC内过点B作垂直于BC的直线为x轴,BC所在直线为y轴,在平面ABC内过点B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系,
    反思感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.
    证明 设AB的中点为O,作OO1∥AA1.以O为坐标原点,OB所在直线为x轴,OC所在直线为y轴,OO1所在直线为z轴建立如图所示的空间直角坐标系Oxyz.
    例2 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E为PC的中点,EF⊥BP于点F.求证:PB⊥平面EFD.
    证明 由题意得,DA,DC,DP两两垂直,所以以D为坐标原点,DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系Dxyz,如图,设DC=PD=1,
    即x+y -z=0. ①
    所以x=λ,y=λ,z-1=-λ. ②
    因为PB⊥EF,又EF∩DE=E,EF,DE⊂平面EFD.所以PB⊥平面EFD.
    方法二 设n2=(x2,y2,z2)为平面EFD的法向量,
    反思感悟 用坐标法证明线面垂直的方法及步骤(1)利用线线垂直①将直线的方向向量用坐标表示.②找出平面内两条相交直线,并用坐标表示它们的方向向量.③ 判断直线的方向向量与平面内两条直线的方向向量垂直.(2)利用平面的法向量①将直线的方向向量用坐标表示.②求出平面的法向量.③判断直线的方向向量与平面的法向量平行.
    跟踪训练 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是BB1,D1B1的中点.求证:EF⊥平面B1AC.
    证明 设正方体的棱长为2,建立如图所示的空间直角坐标系,则A(2,0,0),C(0,2,0),B1(2,2,2),E(2,2,1),F(1,1,2).
    设平面B1AC的法向量为n=(x,y,z),
    ∴EF⊥平面B1AC.
    令x=1得n=(1,1,-1),
    例3 在四棱锥S-ABCD中,底面ABCD是正方形,AS⊥底面ABCD,且AS=AB,E是SC的中点.求证:平面BDE⊥平面ABCD.
    证明 设AS=AB=1,建立如图所示的空间直角坐标系,
    方法一 连接AC,交BD于点O,连接OE,
    所以OE∥AS.又AS⊥平面ABCD,所以OE⊥平面ABCD.又OE⊂平面BDE,所以平面BDE⊥平面ABCD.
    方法二 设平面BDE的法向量为n1=(x,y,z).
    令x=1,可得平面BDE的一个法向量为n1=(1,1,0).
    因为n1·n2=0,所以平面BDE⊥平面ABCD.
    反思感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)法向量法:证明两个平面的法向量互相垂直.
    跟踪训练 在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.求证:平面AED⊥平面A1FD1.
    证明 以D为坐标原点,分别以DA,DC,DD1所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系Dxyz.设正方体的棱长为2,则D(0,0,0),A(2,0,0),E(2,2,1),F(0,1,0),A1(2,0,2),D1(0,0,2),
    设平面AED的一个法向量为n1=(x1,y1,z1).
    令y1=1,得n1=(0,1,-2).同理,平面A1FD1的一个法向量为n2=(0,2,1).∵n1·n2=(0,1,-2)·(0,2,1)=0,∴n1⊥n2,∴平面AED⊥平面A1FD1.
    1.已知平面α的法向量为a=(1,2,-2),平面β的法向量为b=(-2,-4,k),若α⊥β,则k等于( )A.4 B.-4 C.5 D.-5
    解析 ∵α⊥β,∴a⊥b,∴a·b=-2-8-2k=0.∴k=-5.
    2.如图,在空间直角坐标系中,正方体棱长为2,点E是棱AB的中点,点F(0,y,z)是正方体的面AA1D1D上一点,且CF⊥B1E,则点F(0,y,z)满足方程( )A.y-z=0B.2y-z-1=0C.2y-z-2=0D.z-1=0
    解析 E(1,0,0),B1(2,0,2),C(2,2,0),
    即2-2z=0,即z=1.
    3.已知点A(0,1,0),B(-1,0,-1),C(2,1,1),P(x,0,z),若PA⊥平面ABC,则点P的坐标为( )A.(1,0,-2) B.(1,0,2) C.(-1,0,2) D.(2,0,-1)
    得-x+1-z=0. ①
    联立①②得x=-1,z=2,故点P的坐标为(-1,0,2).
    4.(多选)在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则直线OM( )A.和AC垂直 B.和AA1垂直C.和MN垂直 D.与AC,MN都不垂直
    解析 以D为原点,DA,DC,DD1所在的直线为x轴、y轴、z轴建立空间直角坐标系.设正方体的棱长为2a,则D(0,0,0),D1(0,0,2a),M(0,0,a),A(2a,0,0),C(0,2a,0),O(a,a,0),N(0,a,2a).
    ∴OM⊥AC,OM⊥MN.OM和AA1显然不垂直,故选AC.
    解析 以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,设正方形边长为1,PA=a,
    设点F的坐标为(0,y,0),
    所以F为AD的中点,所以AF∶FD=1∶1.
    6.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,∠BAC=90°,AB=AC=AA1=1,D是棱CC1的中点,P是AD的延长线与A1C1的延长线的交点,若点Q在线段B1P上,则下列结论正确的是( )
    A.当点Q为线段B1P的中点时,DQ⊥平面A1BDB.当点Q为线段B1P的三等分点时,DQ⊥平面A1BDC.在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BDD.不存在DQ与平面A1BD垂直
    解析 以A1为坐标原点,A1B1,A1C1,A1A所在直线分别为x轴,y轴,z轴建立空间直角坐标系(图略),则由已知得A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),
    取z=-2,则x=2,y=1,所以平面A1BD的一个法向量为n=(2,1,-2).
    但此方程关于λ无解.故不存在DQ与平面A1BD垂直.
    解析 以D为原点,分别以DA,DC,DD1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Dxyz,
    解析 如图,以A为坐标原点,平行于BC的直线为x轴,AC,AS所在直线分别为y轴,z轴建立空间直角坐标系Axyz,
    9.在空间直角坐标系中,已知直角三角形ABC的三个顶点为A(-3,-2,1),B(-1,-1,-1),C(-5,x,0),则x的值为________.
    解析 ∵A(-3,-2,1),B(-1,-1,-1),C(-5,x,0),
    综上,x的值为0或9.
    (-2,4,1)或(2,-4,-1)
    设n=(x,y,z),∵n与平面ABC垂直,
    解得y=4或y=-4.当y=4时,x=-2,z=1;当y=-4时,x=2,z=-1.∴n的坐标为(-2,4,1)或(2,-4,-1).
    11.如图,已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E,C1F上的点,则与平面ABCD垂直的直线MN有________条.
    解析 假设存在满足条件的直线MN,建立空间直角坐标系如图所示,不妨设正方体的棱长为2,则D1(2,0,2),E(1,2,0),
    所以(x-2,y,z-2)=m(-1,2,-2),x=2-m,y=2m,z=2-2m,所以M(2-m,2m,2-2m),
    即存在满足条件的直线MN,有且只有一条.
    12.已知正方体ABCD-A1B1C1D1中,E为棱CC1上的动点.(1)求证:A1E⊥BD;
    证明 以D为坐标原点,以DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设正方体棱长为a,则A(a,0,0),B(a,a,0),C(0,a,0),A1(a,0,a),C1(0,a,a).设E(0,a,b)(0≤b≤a),
    (2)若平面A1BD⊥平面EBD,试确定E点的位置.
    解 设平面A1BD,平面EBD的法向量分别为n1=(x1,y1,z1),n2=(x2,y2,z2).
    由平面A1BD⊥平面EBD,得n1⊥n2,
    ∴当E为CC1的中点时,平面A1BD⊥平面EBD.
    相关课件

    人教A版 (2019)选择性必修 第一册1.4 空间向量的应用备课ppt课件: 这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用备课ppt课件,共40页。

    高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.4 空间向量的应用优秀ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.4 空间向量的应用优秀ppt课件,共30页。PPT课件主要包含了即时巩固,BCD,证明线线垂直问题,证明线面垂直问题,证明面面垂直问题,PM⊥AM,所以PM⊥AM,分三种情况等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第一册1.4 空间向量的应用一等奖ppt课件: 这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用一等奖ppt课件,共29页。PPT课件主要包含了即时巩固,α∥β,证明线线平行,证明线面平行,证明面面平行,ACD等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map