搜索
    上传资料 赚现金
    英语朗读宝

    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习

    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第1页
    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第2页
    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第3页
    还剩44页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习

    展开

    这是一份第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共47页。试卷主要包含了x﹣1与x轴有公共点,探索发现,两点,与y轴交于点C,连接BC,,连接AC,BC等内容,欢迎下载使用。
    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
    一.二次函数综合题(共15小题)
    1.(2022•日照)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2mx+3m,点A(3,0).
    (1)当抛物线过点A时,求抛物线的解析式;
    (2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;
    (3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD与y轴交于点N.设S=S△PAM﹣S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.

    2.(2022•济宁)已知抛物线C1:y=﹣(m2+1)x2﹣(m+1)x﹣1与x轴有公共点.
    (1)当y随x的增大而增大时,求自变量x的取值范围;
    (2)将抛物线C1先向上平移4个单位长度,再向右平移n个单位长度得到抛物线C2(如图所示),抛物线C2与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.当OC=OA时,求n的值;
    (3)在(2)的条件下,D为抛物线C2的顶点,过点C作抛物线C2的对称轴l的垂线,垂足为G,交抛物线C2于点E,连接BE交l于点F.求证:四边形CDEF是正方形.

    3.(2022•烟台)如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.
    (1)求抛物线的表达式;
    (2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
    (3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.

    4.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
    (1)求二次函数的表达式;
    (2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
    (3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.


    5.(2022•威海)探索发现
    (1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD.
    ①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE;
    ②如图2,点P(2,﹣5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG;
    归纳概括
    (2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.
    在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合),   .
    6.(2022•泰安)若二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0,﹣4),其对称轴为直线x=1,与x轴的另一交点为C.
    (1)求二次函数的表达式;
    (2)若点M在直线AB上,且在第四象限,过点M作MN⊥x轴于点N.
    ①若点N在线段OC上,且MN=3NC,求点M的坐标;
    ②以MN为对角线作正方形MPNQ(点P在MN右侧),当点P在抛物线上时,求点M的坐标.


    7.(2021•滨州)如下列图形所示,在平面直角坐标系中,一个三角板的直角顶点与原点O重合,在其绕原点O旋转的过程中,两直角边所在直线分别与抛物线y=x2相交于点A、B(点A在点B的左侧).
    (1)如图1,若点A、B的横坐标分别为﹣3、,求线段AB中点P的坐标;
    (2)如图2,若点B的横坐标为4,求线段AB中点P的坐标;
    (3)如图3,若线段AB中点P的坐标为(x,y),求y关于x的函数解析式;
    (4)若线段AB中点P的纵坐标为6,求线段AB的长.

    8.(2021•淄博)如图,在平面直角坐标系中,抛物线y=﹣x2+•x+(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
    (1)若OC=2OA,求抛物线对应的函数表达式;
    (2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,求点P的坐标;
    (3)设直线y=x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.

    9.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
    (1)求抛物线的表达式和AC所在直线的表达式;
    (2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
    (3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.

    10.(2020•日照)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.
    (Ⅰ)求m,n的值以及函数的解析式;
    (Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;
    (Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,
    (1)当0≤x≤3时,求函数y的最大值和最小值;
    (2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.

    11.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
    (1)求抛物线的函数表达式;
    (2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
    (3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.

    12.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
    (1)求这条抛物线的函数解析式;
    (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
    (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.

    13.(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
    (1)求⊙C的标准方程;
    (2)试判断直线AE与⊙C的位置关系,并说明理由.

    14.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.

    15.(2020春•江夏区校级期中)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.

    (1)求抛物线的函数表达式;
    (2)如图1,求线段DE长度的最大值;
    (3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.

    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
    参考答案与试题解析
    一.二次函数综合题(共15小题)
    1.(2022•日照)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2mx+3m,点A(3,0).
    (1)当抛物线过点A时,求抛物线的解析式;
    (2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;
    (3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD与y轴交于点N.设S=S△PAM﹣S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.

    【解答】(1)解:把x=3,y=0代入y=﹣x2+2mx+3m得,
    ﹣9+6m+3m=0,
    ∴m=1,
    ∴y=﹣x2+2x+3;
    (2)证明:∵y=﹣x2+m(2x+3),
    ∴当2x+3=0时,即x=﹣时,
    y=﹣,
    ∴D(﹣,﹣);
    (3)如图,

    连接OP,
    设P(m,﹣m2+2m+3),
    设PD的解析式为:y=kx+b,
    ∴,
    ∴,
    ∴ON=﹣+3,
    ∵S=S△PAM﹣S△BMN,
    ∴S=(S△PAM+S四边形AONM)﹣(S四边形AONM+S△BMN)=S四边形AONP﹣S△AOB,
    ∵S四边形AONP=S△AOP+S△PON=+=+(﹣=﹣+m+,S△AOB==,
    ∴S=﹣+m=﹣(m﹣1)2+,
    ∴当m=1时,S最大=,
    当m=1时,y=﹣12+2×1+3=4,
    ∴P(1,4).
    2.(2022•济宁)已知抛物线C1:y=﹣(m2+1)x2﹣(m+1)x﹣1与x轴有公共点.
    (1)当y随x的增大而增大时,求自变量x的取值范围;
    (2)将抛物线C1先向上平移4个单位长度,再向右平移n个单位长度得到抛物线C2(如图所示),抛物线C2与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.当OC=OA时,求n的值;
    (3)在(2)的条件下,D为抛物线C2的顶点,过点C作抛物线C2的对称轴l的垂线,垂足为G,交抛物线C2于点E,连接BE交l于点F.求证:四边形CDEF是正方形.

    【解答】(1)解:∵抛物线与x轴有公共点,
    ∴[﹣(m+1)]2﹣4×≥0,
    ∴﹣(m﹣1)2≥0,
    ∴m=1,
    ∴y=﹣x2﹣2x﹣1=﹣(x+1)2,
    ∵a=﹣1<0,
    ∴当x<﹣1时,y随x的增大而增大;、
    (2)解:由题意得,抛物线C2的解析式为:y=﹣(x+1﹣n)2+4,
    当x=0时,y=﹣(1﹣n)2+4,
    ∴OC=﹣(1﹣n)2+4,
    当y=0时,﹣(x+1﹣n)2+4=0,
    ∴x1=n+1,x2=n﹣3,
    ∵点A在B点右侧,
    ∴OA=n+1,
    由OC=OA得,
    ﹣(1﹣n)2+4=n+1,
    ∴n=2或n=﹣1(舍去),
    ∴n=2;
    (3)证明:由(2)可得,
    y=﹣(x﹣1)2+4,B(﹣1,0),C(0,3),
    ∴E(2,3),D(1,4),
    设直线BE的解析式为:y=kx+b,
    ∴,
    ∴,
    ∴y=x+1,
    ∴当x=1时,y=1+1=2,
    ∴CG=EG=DG=FG=1,
    ∴四边形CDEF是菱形,
    ∵DF⊥CE,
    ∴四边形CDEF是正方形.
    3.(2022•烟台)如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.
    (1)求抛物线的表达式;
    (2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
    (3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.

    【解答】解:(1)当x=0时,y=4,
    ∴C (0,4),
    当y=0时,x+4=0,
    ∴x=﹣3,
    ∴A (﹣3,0),
    ∵对称轴为直线x=﹣1,
    ∴B(1,0),
    ∴设抛物线的表达式:y=a(x﹣1)•(x+3),
    ∴4=﹣3a,
    ∴a=﹣,
    ∴抛物线的表达式为:y=﹣(x﹣1)•(x+3)=﹣x2﹣x+4;
    (2)如图1,

    作DF⊥AB于F,交AC于E,
    ∴D(m,﹣﹣m+4),E(m,m+4),
    ∴DE=﹣﹣m+4﹣(m+4)=﹣m2﹣4m,
    ∴S△ADC=OA=•(﹣m2﹣4m)=﹣2m2﹣6m,
    ∵S△ABC===8,
    ∴S=﹣2m2﹣6m+8=﹣2(m+)2+,
    ∴当m=﹣时,S最大=,
    当m=﹣时,y=﹣=5,
    ∴D(﹣,5);
    (3)存在点P和点Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形,理由如下:
    设P(﹣1,n),
    ∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,
    ∴PA=PC,
    即:PA2=PC2,
    ∴(﹣1+3)2+n2=1+(n﹣4)2,
    ∴n=,
    ∴P(﹣1,),
    ∵xP+xQ=xA+xC,yP+yQ=yA+yC
    ∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣=,
    ∴Q(﹣2,).
    4.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
    (1)求二次函数的表达式;
    (2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
    (3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.


    【解答】(1)解:由题意得,

    ∴,
    ∴二次函数的表达式为:y=﹣x2﹣2x+3;
    (2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,
    ∴D(﹣1,4),
    由﹣x2﹣2x+3=0得,
    x1=﹣3,x2=1,
    ∴A(﹣3,0),B(1,0),
    ∴AD2=20,
    ∵C(0,3),
    ∴CD2=2,AC2=18,
    ∴AC2+CD2=AD2,
    ∴∠ACD=90°,
    ∴tan∠DAC===,
    ∵∠BOC=90°,
    ∴tan∠BCO==,
    ∴∠DAC=∠BCO;
    (3)解:如图,

    作DE⊥y轴于E,作D1F⊥y轴于F,
    ∴DE∥FD1,
    ∴△DEC∽△D1FC,
    ∴=,
    ∴FD1=2DE=2,CF=2CE=2,
    ∴D1(2,1),
    ∴y1的关系式为:y=﹣(x﹣2)2+1,
    当x=0时,y=﹣3,
    ∴N(0,﹣3),
    同理可得:,
    ∴,
    ∴OM=3,
    ∴M(3,0),
    设P(2,m),
    当▱MNQP时,
    ∴MN∥PQ,PQ=MN,
    ∴Q点的横坐标为﹣1,
    当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,
    ∴Q(﹣1,8),
    当▱MNPQ时,
    同理可得:点Q横坐标为:5,
    当x=5时,y=﹣(5﹣2)2+1=﹣8,
    ∴Q′(5,﹣8),
    综上所述:点Q(﹣1,﹣8)或(5,﹣8).
    5.(2022•威海)探索发现
    (1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD.
    ①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE;
    ②如图2,点P(2,﹣5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG;
    归纳概括
    (2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.
    在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合), 作MN⊥x轴于N,直线DM交直线x=1于Q,则QN∥AD .
    【解答】解:(1)①由题意得,

    ∴,
    ∴y=﹣x2﹣2x+3=﹣(x+1)2+4,
    ∴D(﹣1,4),C(0,3),
    设直线CD的解析式为:y=mx+n,
    ∴,
    ∴,
    ∴y=﹣x+3,
    ∴当x=1时,y=﹣1+3=2,
    ∴E(1,2),
    ∴直线OE的解析式为:y=2x,
    设直线AD的解析式为y=cx+d,
    ∴,
    ∴,
    ∴y=2x+6,
    ∴OE∥AD;
    ②设直线PD的解析式为:y=ex+f,
    ∴,
    ∴,
    ∴y=﹣3x+1,
    ∴当x=1时,y=﹣3×1+1=﹣2,
    ∴H(1,﹣2),
    设直线GH的解析式为:y=gx+h,
    ∴,
    ∴,
    ∴y=2x﹣4,
    ∴AD∥HG;
    (2)作MN⊥x轴于N,直线DM交直线x=1于Q,则QN∥AD,理由如下:
    设M(m,﹣m2﹣2m+3),
    设直线DM的解析式为y=px+q,
    ∴,
    ∴,
    ∴y=﹣(m+1)x+(﹣m+3),
    ∴当x=1时,y=﹣m﹣1﹣m+3=﹣2m+2,
    ∴Q(1,﹣2m+2),
    设直线NQ的解析式为:y=ix+j,
    ∴,
    ∴,
    ∴y=2x﹣2m,
    ∴QN∥AD.
    6.(2022•泰安)若二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0,﹣4),其对称轴为直线x=1,与x轴的另一交点为C.
    (1)求二次函数的表达式;
    (2)若点M在直线AB上,且在第四象限,过点M作MN⊥x轴于点N.
    ①若点N在线段OC上,且MN=3NC,求点M的坐标;
    ②以MN为对角线作正方形MPNQ(点P在MN右侧),当点P在抛物线上时,求点M的坐标.


    【解答】解:(1)∵二次函数y=ax2+bx+c的图象经过点B(0,﹣4),
    ∴c=﹣4,
    ∵对称轴为直线x=1,经过A(﹣2,0),
    ∴,
    解得,
    ∴抛物线的解析式为y=x2﹣x﹣4;

    (2)①如图1中,

    设直线AB的解析式为y=kx+n,
    ∵A(﹣2,0),B(0,﹣4),
    ∴,
    解得,
    ∴直线AB的解析式为y=﹣2x﹣4,
    ∵A,C关于直线x=1对称,
    ∴C(4,0),
    设N(m,0),
    ∵MN⊥x轴,
    ∴M(m,﹣2m﹣4),
    ∴NC=4﹣m,
    ∵MN=3NC,
    ∴2m+4=3(4﹣m),
    ∴m=,
    ∴点M(,﹣);

    ②如图2中,连接PQ,MN交于点E.设M(t,﹣2t﹣4),则点N(t,0),

    ∵四边形MPNQ是正方形,
    ∴PQ⊥MN,NE=EP,NE=MN,
    ∴PQ∥x轴,
    ∴E(t,﹣t﹣2),
    ∴NE=t+2,
    ∴ON+EP=ON+NE=t+t+2=2t+2,
    ∴P(2t+2,﹣t﹣2),
    ∵点P在抛物线y=x2﹣x﹣4上,
    ∴(2t+2)2﹣(2t+2)﹣4=﹣t﹣2,
    解得t1=,t2=﹣2,
    ∵点P在第四象限,
    ∴t=﹣2舍去,
    ∴t=,
    ∴点M坐标为(,﹣5).


    7.(2021•滨州)如下列图形所示,在平面直角坐标系中,一个三角板的直角顶点与原点O重合,在其绕原点O旋转的过程中,两直角边所在直线分别与抛物线y=x2相交于点A、B(点A在点B的左侧).
    (1)如图1,若点A、B的横坐标分别为﹣3、,求线段AB中点P的坐标;
    (2)如图2,若点B的横坐标为4,求线段AB中点P的坐标;
    (3)如图3,若线段AB中点P的坐标为(x,y),求y关于x的函数解析式;
    (4)若线段AB中点P的纵坐标为6,求线段AB的长.

    【解答】解:(1)∵点A、B在抛物线y=x2上,点A、B的横坐标分别为﹣3、,
    ∴当x=﹣3时,y=×(﹣3)2=×9=,当x=时,y=×()2=×=,
    即点A的坐标为(﹣3,),点B的坐标为(,),
    作AC⊥x轴于点C,作BD⊥x轴于点D,作PE⊥x轴于点E,如右图1所示,
    则AC∥BD∥PE,
    ∵点P为线段AB的中点,
    ∴PA=PB,
    由平行线分线段成比例,可得EC=ED,
    设点P的坐标为(x,y),
    则x﹣(﹣3)=﹣x,
    ∴x==﹣,
    同理可得,y==,
    ∴点P的坐标为(﹣,);
    (2)∵点B在抛物线y=x2上,点B的横坐标为4,
    ∴点B的纵坐标为:y=×42=8,
    ∴点B的坐标为(4,8),
    ∴OD=4,DB=8,
    作AC⊥x轴于点C,作BD⊥x轴于点D,如右图2所示,
    ∵∠AOB=90°,∠ACO=90°,∠ODB=90°,
    ∴∠AOC+∠BOD=90°,∠BOD+∠OBD=90°,∠ACO=∠ODB,
    ∴∠AOC=∠OBD,
    ∴△AOC∽△OBD,
    ∴,
    设点A的坐标为(a,a2),
    ∴CO=﹣a,AC=a2,
    ∴,
    解得a1=0(舍去),a2=﹣1,
    ∴点A的坐标为(﹣1,),
    ∴中点P的横坐标为:=,纵坐标为=,
    ∴线段AB中点P的坐标为(,);
    (3)作AC⊥x轴于点C,作BD⊥x轴于点D,如右图3所示,
    由(2)知,△AOC∽△OBD,
    ∴,
    设点A的坐标为(a,a2),点B的坐标为(b,b2),
    ∴,
    解得,ab=﹣4,
    ∵点P(x,y)是线段AB的中点,
    ∴x=,y===,
    ∴a+b=2x,
    ∴y==x2+2,
    即y关于x的函数解析式是y=x2+2;
    (4)当y=6时,6=x2+2,
    ∴x2=4,
    ∵OP===2,△AOB是直角三角形,点P时斜边AB的中点,
    ∴AB=2OP=4,
    即线段AB的长是4.



    8.(2021•淄博)如图,在平面直角坐标系中,抛物线y=﹣x2+•x+(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
    (1)若OC=2OA,求抛物线对应的函数表达式;
    (2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,求点P的坐标;
    (3)设直线y=x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.

    【解答】解:(1)∵A的坐标为(﹣1,0),
    ∴OA=1,
    ∵OC=2OA,
    ∴OC=2,
    ∴C的坐标为(0,2),
    将点C代入抛物线y=﹣x2+•x+(m>0),
    得=2,即m=4,
    ∴抛物线对应的函数表达式为y=﹣x2+x+2;
    (2)如图,过P作PH∥y轴,交BC于H,

    由(1)知,抛物线对应的函数表达式为y=﹣x2+x+2,m=4,
    ∴B、C坐标分别为B(4,0)、C(0,2),
    设直线BC解析式为y=kx+n,
    则,解得,
    ∴直线BC的解析式为y=﹣x+2,
    设点P的坐标为(m,﹣m2+m+2)(0<m<4),则H(m,﹣m+2),
    ∴PH=﹣m2+m+2﹣(﹣m+2)
    =﹣m2+2m
    =﹣(m2﹣4m)
    =﹣(m﹣2)2+2,
    ∵S△PBC=S△CPH+S△BPH,
    ∴S△PBC=PH•|xB﹣xC|
    =[﹣(m﹣2)2+2]×4
    =﹣(m﹣2)2+4,
    ∴当m=2时,△PBC的面积最大,此时点P(2,3);
    (3)存在,理由如下:
    ∵直线y=x+b与抛物线交于B(m,0),
    ∴直线BG的解析式为y=x﹣m①,
    ∵抛物线的表达式为y=﹣x2+•x+②,
    联立①②解得,或,
    ∴G的坐标为(﹣2,﹣m﹣1),
    ∵抛物线y=﹣x2+•x+的对称轴为直线x=,
    ∴点F的横坐标为,
    ①若BG为边,
    不妨设E在x轴上方,如图,过点E作EH⊥x轴于H,

    设E的坐标为(t,﹣t2+•t+),
    ∵∠GBE=90°,
    ∴∠OBG=∠BEH,
    ∴tan∠OBG=tan∠BEH==,
    ∴=,
    解得:t=3或m(舍),
    ∴E的坐标为(3,2m﹣6),
    由平移性质,
    得:B的横坐标向左平移m+2个单位得到G的横坐标,
    ∵EF∥BG且EF=BG,
    ∴E横坐标向左平移m+2个单位,
    得:到F的横坐标为3﹣(m+2)=﹣m+1,
    ∴=﹣m+1,
    解得m=1,
    ∴E(3,﹣4),F(0,﹣),
    这说明E不在x轴上方,而在x轴下方;
    ②若BG为对角线,
    设BG的中点为M,
    由中点坐标公式得,,
    ∴M的坐标为(,),
    ∵矩形对角线BG、EF互相平分,
    ∴M也是EF的中点,
    ∴E的横坐标为,
    ∴E的坐标为(,),
    ∵∠BEG=90°,
    ∴EM=,
    ∴=,
    整理得:16+(m2+4m+1)2=20(m+2)2,
    变形得:16+[(m+2)2﹣3]2=20(m+2)2,
    换元,令t=(m+2)2,
    得:t2﹣26t+25=0,
    解得:t=1或25,
    ∴(m+2)2=1或25,
    ∵m>0,
    ∴m=3,
    即E的坐标为(0,),
    F的坐标为(1,﹣4),
    综上,即E的坐标为(0,),F的坐标为(1,﹣4)或E(3,﹣4),F(0,﹣).
    9.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
    (1)求抛物线的表达式和AC所在直线的表达式;
    (2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
    (3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.

    【解答】解:(1)∵抛物线y=ax2+x+c过点A(1,0),C(0,﹣2),
    ∴,解得:.
    ∴抛物线的表达式为y=.
    设直线AC的表达式为y=kx+b,则
    ,解得:.
    ∴直线AC的表达式为y=2x﹣2.
    (2)点D不在抛物线的对称轴上,理由是:
    ∵抛物线的表达式为y=,
    ∴点B坐标为(﹣4,0).
    ∵OA=1,OC=2,
    ∴.
    又∵∠AOC=∠COB=90°,
    ∴△AOC∽△COB.
    ∴∠ACO=∠CBO.
    ∴∠ACO+∠BCO=∠OBC+∠BCO=90°,
    ∴AC⊥BC.
    ∴将△ABC沿BC所在直线折叠,点D一定落在直线AC上,
    延长AC至D,使DC=AC,过点D作DE⊥y轴交y轴于点E,如图1.
    又∵∠ACO=∠DCE,
    ∴△ACO≌△DCE(AAS).
    ∴DE=AO=1,则点D横坐标为﹣1,
    ∵抛物线的对称轴为直线x=﹣.
    故点D不在抛物线的对称轴上.
    (3)设过点B、C的直线表达式为y=px+q,
    ∵C(0,﹣2),B(﹣4,0),
    ∴,解得:.
    ∴过点B、C的直线解析式为y=.
    过点A作x轴的垂线交BC的延长线于点M,点M坐标为(1,﹣),
    过点P作x轴的垂线交BC于点N,垂足为H,如图2.
    设点P坐标为(m,),则点N坐标为(m,),
    ∴PN=﹣()=,
    ∵PN∥AM,
    ∴△AQM∽△PQN.
    ∴.
    若分别以PQ、AQ为底计算△BPQ和△BAQ的面积(同高不等底),
    则△BPQ与△BAQ的面积比为,即.
    ∴===.
    ∵﹣<0,
    ∴当m=﹣2时,的最大值为,此时点P坐标为(﹣2,﹣3).


    10.(2020•日照)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.
    (Ⅰ)求m,n的值以及函数的解析式;
    (Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;
    (Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,
    (1)当0≤x≤3时,求函数y的最大值和最小值;
    (2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.

    【解答】(I)解:∵m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n,
    用因式分解法解方程:(x+1)(x﹣3)=0,
    ∴x1=﹣1,x2=3,
    ∴m=﹣1,n=3,
    ∴A(﹣1,0),B(0,3),
    把(﹣1,0),(0,3)代入得,,解得,
    ∴函数解析式为y=﹣x2+2x+3.
    ( II)证明:令y=﹣x2+2x+3=0,即x2﹣2x﹣3=0,
    解得x1=﹣1,x2=3,
    ∴抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),C(3,0),
    ∴OA=1,OC=3,
    ∴对称轴为,顶点D(1,﹣1+2+3),即D(1,4),
    ∴,,,
    ∵CD2=DB2+CB2,
    ∴△BCD是直角三角形,且∠DBC=90°,
    ∴∠AOB=∠DBC,
    在Rt△AOB和Rt△DBC中,=,,
    ∴,
    ∴△BCD∽△OBA;
    ( III)解:抛物线y=﹣x2+2x+3的对称轴为直线x=1,顶点为D(1,4),
    (1)在0≤x≤3范围内,
    当x=1时,y最大值=4;当x=3时,y最小值=0;
    (2)①当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧,当x=t时取得最小值q=﹣t2+2t+3,最大值p=﹣(t+1)2+2(t+1)+3,
    令p﹣q=﹣(t+1)2+2(t+1)+3﹣(﹣t2+2t+3)=3,即﹣2t+1=3,解得t=﹣1.
    ②当t+1=1时,此时p=4,q=3,不合题意,舍去;
    ③当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧,
    此时p=4,令p﹣q=4﹣(﹣t2+2t+3)=3,即t2﹣2t﹣2=0解得:t1=1+(舍),t2=1﹣(舍);
    或者p﹣q=4﹣[﹣(t+1)2+2(t+1)+3]=3,即t1=﹣(不合题意,舍去),t2=(舍);
    ④当t=1时,此时p=4,q=3,不合题意,舍去;
    ⑤当函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧,当x=t时取得最大值p=﹣t2+2t+3,最小值q=﹣(t+1)2+2(t+1)+3,
    令p﹣q=﹣t2+2t+3﹣[﹣(t+1)2+2(t+1)+3]=3,解得t=2.
    综上,t=﹣1或t=2.
    11.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
    (1)求抛物线的函数表达式;
    (2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
    (3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.

    【解答】解:(1)∵OA=2,OB=4,
    ∴A(﹣2,0),B(4,0),
    把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣6中得:,
    解得:,
    ∴抛物线的解析式为:y=x2﹣x﹣6;

    (2)如图1,过D作DG⊥x轴于G,交BC于H,

    当x=0时,y=﹣6,
    ∴C(0,﹣6),
    设BC的解析式为:y=kx+n,
    则,解得:,
    ∴BC的解析式为:y=x﹣6,
    设D(x,x2﹣x﹣6),则H(x,x﹣6),
    ∴DH=x﹣6﹣(x2﹣x﹣6)=﹣,
    ∵△BCD的面积是,
    ∴,
    ∴,
    解得:x=1或3,
    ∵点D在直线l右侧的抛物线上,
    ∴D(3,﹣),
    ∴△ABD的面积===;

    (3)分两种情况:
    ①如图2,N在x轴的上方时,四边形MNBD是平行四边形,

    ∵B(4,0),D(3,﹣),且M在x轴上,
    ∴N的纵坐标为,
    当y=时,即x2﹣x﹣6=,
    解得:x=1+或1﹣,
    ∴N(1﹣,)或(1+,);
    ②如图3,点N在x轴的下方时,四边形BDNM是平行四边形,此时M与O重合,

    ∴N(﹣1,﹣);
    综上,点N的坐标为:(1﹣,)或(1+,)或(﹣1,﹣).
    12.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
    (1)求这条抛物线的函数解析式;
    (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
    (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.

    【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,
    ∵抛物线经过B(0,﹣),
    ∴﹣=4a﹣1,
    ∴a=
    ∴抛物线的解析式为y=(x﹣2)2﹣1.
    (2)证明:过点P作PJ⊥AF于J.
    ∵P(m,n),
    ∴n=(m﹣2)2﹣1=m2﹣m﹣,
    ∴P(m,m2﹣m﹣),
    ∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,
    ∵F(2,1),
    ∴PF===,
    ∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,
    ∴d2=PF2,
    ∴PF=d.

    (3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.
    ∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,
    ∴DQ+QF的值最小时,△DFQ的周长最小,
    由(2)可知QF=QH,
    ∴DQ+QF=DQ+QH,
    根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,
    ∴DQ+QH的最小值为6,
    ∴△DFQ的周长的最小值为2+6,此时Q(4,﹣).

    13.(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
    (1)求⊙C的标准方程;
    (2)试判断直线AE与⊙C的位置关系,并说明理由.

    【解答】解:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.
    ∵与y轴相切于点D(0,4),
    ∴CD⊥OD,
    ∵∠CDO=∠CMO=∠DOM=90°,
    ∴四边形ODCM是矩形,
    ∴CM=OD=4,CD=OM=r,
    ∵B(8,0),
    ∴OB=8,
    ∴BM=8﹣r,
    在Rt△CMB中,∵BC2=CM2+BM2,
    ∴r2=42+(8﹣r)2,
    解得r=5,
    ∴C(5,4),
    ∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.

    (2)结论:AE是⊙C的切线.
    理由:连接AC,CE.
    ∵CM⊥AB,
    ∴AM=BM=3,
    ∴A(2,0),B(8,0)
    设抛物线的解析式为y=a(x﹣2)(x﹣8),
    把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=,
    ∴抛物线的解析式为y=(x﹣2)(x﹣8)=x2﹣x+4=(x﹣5)2﹣,
    ∴抛物线的顶点E(5,﹣),
    ∵AE==,CE=4+=,AC=5,
    ∴EC2=AC2+AE2,
    ∴∠CAE=90°,
    ∴CA⊥AE,
    ∴AE是⊙C的切线.

    14.(2020•聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.

    【解答】解:(1)将点A(﹣1,0),B(4,0),代入y=ax2+bx+4,
    得:,
    解得:,
    ∴二次函数的表达式为:y=﹣x2+3x+4,
    当x=0时,y=4,
    ∴C(0,4),
    设BC所在直线的表达式为:y=mx+n,
    将C(0,4)、B(4,0)代入y=mx+n,
    得:,
    解得:,
    ∴BC所在直线的表达式为:y=﹣x+4;
    (2)∵DE⊥x轴,PF⊥x轴,
    ∴DE∥PF,
    只要DE=PF,四边形DEFP即为平行四边形,
    ∵y=﹣x2+3x+4=﹣(x﹣)2+,
    ∴点D的坐标为:(,),
    将x=代入y=﹣x+4,即y=﹣+4=,
    ∴点E的坐标为:(,),
    ∴DE=﹣=,
    设点P的横坐标为t,
    则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),
    ∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
    由DE=PF得:﹣t2+4t=,
    解得:t1=(不合题意舍去),t2=,
    当t=时,﹣t2+3t+4=﹣()2+3×+4=,
    ∴点P的坐标为(,);
    (3)存在,理由如下:
    如图2所示:
    由(2)得:PF∥DE,
    ∴∠CED=∠CFP,
    又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
    ∴∠PCF≠∠DCE,
    ∴只有∠PCF=∠CDE时,△PCF∽△CDE,
    ∴=,
    ∵C(0,4)、E(,),
    ∴CE==,
    由(2)得:DE=,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),
    ∴CF==t,
    ∴=,
    ∵t≠0,
    ∴(﹣t+4)=3,
    解得:t=,
    当t=时,﹣t2+3t+4=﹣()2+3×+4=,
    ∴点P的坐标为:(,).

    15.(2020春•江夏区校级期中)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.

    (1)求抛物线的函数表达式;
    (2)如图1,求线段DE长度的最大值;
    (3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.
    【解答】解:(1)由题意,得,
    解得,
    抛物线的函数表达式为y=﹣x2+x+3;
    (2)设直线BC的解析式为y=kx+b,,
    解得
    ∴y=﹣x+3,
    设D(a,﹣a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,
    如图1,
    M(a,﹣a+3),
    DM=(﹣a2+a+3)﹣(﹣a+3)=﹣a2+3a,
    ∵∠DME=∠OCB,∠DEM=∠BOC,
    ∴△DEM∽△BOC,
    ∴=,
    ∵OB=4,OC=3,
    ∴BC=5,
    ∴DE=DM
    ∴DE=﹣a2+a=﹣(a﹣2)2+,
    当a=2时,DE取最大值,最大值是,
    (3)存在.假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,
    ∵点F为AB的中点,
    ∴OF=,tan∠CFO==2,
    过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,
    如图2,
    ①若∠DCE=∠CFO,
    ∴tan∠DCE==2,
    ∴BG=10,
    ∵△GBH∽BCO,
    ∴==,
    ∴GH=8,BH=6,
    ∴G(10,8),
    设直线CG的解析式为y=kx+b′,
    ∴,
    解得
    ∴直线CG的解析式为y=x+3,
    ∴,
    解得x=,或x=0(舍).
    ②若∠CDE=∠CFO,
    同理可得BG=,GH=2,BH=,
    ∴G(,2),
    同理可得,直线CG的解析式为y=﹣x+3,
    ∴,
    解得x=或x=0(舍),
    综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.

    相关试卷

    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习:

    这是一份第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共18页。试卷主要包含了已知等内容,欢迎下载使用。

    第3章二次函数(解答题中档题)-鲁教版(五四制)九年级数学上学期期末复习培优练习:

    这是一份第3章二次函数(解答题中档题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共30页。

    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习:

    这是一份第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共73页。试卷主要包含了之间的函数关系如图中抛物线所示,,与y轴交于点C,,连接AC、BC,,顶点为C,三点等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map