第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
展开
这是一份第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共73页。试卷主要包含了之间的函数关系如图中抛物线所示,,与y轴交于点C,,连接AC、BC,,顶点为C,三点等内容,欢迎下载使用。
第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
一.二次函数图象与系数的关系(共1小题)
1.(2021•威海)在平面直角坐标系中,抛物线y=x2+2mx+2m2﹣m的顶点为A.
(1)求顶点A的坐标(用含有字母m的代数式表示);
(2)若点B(2,yB),C(5,yC)在抛物线上,且yB>yC,则m的取值范围是 ;(直接写出结果即可)
(3)当1≤x≤3时,函数y的最小值等于6,求m的值.
二.抛物线与x轴的交点(共1小题)
2.(2020•东营)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
(1)求抛物线的解析式及点A、B的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
三.二次函数的应用(共1小题)
3.(2021•青岛)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.
(1)直接写出y1与x之间的函数关系式;
(2)求出y2与x之间的函数关系式;
(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?
四.二次函数综合题(共17小题)
4.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.
(1)求抛物线的表达式;
(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;
(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.
5.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
(1)求抛物线的表达式;
(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
6.(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.
(1)求抛物线的表达式和t,k的值;
(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.
7.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.
(1)求抛物线的关系式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;
(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;
(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
8.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.
(1)求线段AC的长;
(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;
(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.
9.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.
(1)求抛物线的表达式及点C的坐标;
(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;
(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.
10.(2021•日照)已知:抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)如图1,点P为直线BC上方抛物线上任意一点,连PC、PB、PO,PO交直线BC于点E,设=k,求当k取最大值时点P的坐标,并求此时k的值.
(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.
①求△BDQ的周长及tan∠BDQ的值;
②点M是y轴负半轴上的点,且满足tan∠BMQ=(t为大于0的常数),求点M的坐标.
11.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,抛物线的顶点为M(2,﹣),抛物线与x轴的一个交点为A(4,0),点B(2,2)与点C关于y轴对称.
(1)判断点C是否在该抛物线上,并说明理由;
(2)顺次连接AB,BC,CO,判断四边形ABCO的形状并证明;
(3)设点P是抛物线上的动点,连接PA、PC、AC,△PAC的面积S随点P的运动而变化,请探究S的大小变化并填写表格①~④处的内容;当S的值为②时,求点P的横坐标的值.
直线AC的函数表达式
S取的一个特殊值
满足条件的P点的个数
S的可能取值范围
①
6
4个
③
②
3个
\
10
2个
④
12.(2021•烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
(1)求抛物线及直线BC的函数表达式;
(2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.
13.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.
(1)求抛物线的关系式及点M的坐标;
(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;
(3)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°.
14.(2021•东营)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,直线y=﹣x+2过B、C两点,连接AC.
(1)求抛物线的解析式;
(2)求证:△AOC∽△ACB;
(3)点M(3,2)是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求PD+PM的最小值.
15.(2021•济宁)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.
(1)求抛物线的解析式;
(2)求证:OE⊥AB;
(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.
16.(2021•菏泽)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.
(1)求该抛物线的表达式;
(2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;
(3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).
17.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
18.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.
19.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m=时,求点P的坐标;
②求m的最大值.
20.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为 ,其理由为: .
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标
…
(﹣2,0)
(0,0)
(2,0)
(4,0)
…
P的坐标
…
(0,﹣1)
(2,﹣2)
…
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 .
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.
第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
参考答案与试题解析
一.二次函数图象与系数的关系(共1小题)
1.(2021•威海)在平面直角坐标系中,抛物线y=x2+2mx+2m2﹣m的顶点为A.
(1)求顶点A的坐标(用含有字母m的代数式表示);
(2)若点B(2,yB),C(5,yC)在抛物线上,且yB>yC,则m的取值范围是 m<﹣3.5 ;(直接写出结果即可)
(3)当1≤x≤3时,函数y的最小值等于6,求m的值.
【解答】解:(1)解法一:
y=x2+2mx+2m2﹣m
=(x+m)2﹣m2+2m2﹣m
=(x+m)2+m2﹣m,
∴顶点A(﹣m,m2﹣m),
解法二:
∵抛物线的对称轴为直线x=,
∴代入关系式得,y=(﹣m)2+2m(﹣m)+2m2﹣m=m2﹣m,
∴顶点A(﹣m,m2﹣m),
(2)解法一:
∵,a=1开口向上,如图,
∴当对称轴大于3.5时满足题意,
∴﹣m>3.5,
∴m<﹣3.5,
解法二:
∵点B(2,yB),C(5,yC)在抛物线y=x2+2mx+2m2﹣m上,
∴yB=4+4m+2m2﹣m,yC=25+10m+2m2﹣m,
又∵yB>yC,
∴yB﹣yC=(4+4m)﹣(25+10m)>0,
解得,m<﹣3.5,
故答案为:m<﹣3.5;
(3)分三种情况讨论:
①当对称轴x=﹣m≤1即m≥﹣1时,如图,
当x=1时,y=6,
∴6=1+2m+2m2﹣m,
整理得,2m2+m﹣5=0,
解得,,(舍去),
∴,
②当1<﹣m≤3即﹣3≤m<﹣1时,如图,
当x=﹣m,y=6,
∴6=m2﹣m,
整理得,m2﹣m﹣6=0,
解得,m1=﹣2,m2=3(舍),
∴m=﹣2,
③当﹣m>3即m<﹣3时,如图,
当x=3时,y=6,
∴6=9+6m+2m2﹣m,
整理得,2m2+5m+3=0,
解得,(两个都舍去),
综上所述:m=﹣2或m=.
二.抛物线与x轴的交点(共1小题)
2.(2020•东营)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
(1)求抛物线的解析式及点A、B的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.
解得a=﹣.
则该抛物线解析式为y=﹣x2+x+2.
由于y=﹣x2+x+2=﹣(x+1)(x﹣4).
故A(﹣1,0),B(4,0);
(2)存在,理由如下:
由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,
∴CD∥EG,
∴=.
∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).
∴CD=2﹣1=1.
∴=EG.
设BC所在直线的解析式为y=mx+n(m≠0).
将B(4,0),C(0,2)代入,得.
解得.
∴直线BC的解析式是y=﹣x+2.
设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.
∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.
∴=﹣(t﹣2)2+2.
∵<0,
∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).
三.二次函数的应用(共1小题)
3.(2021•青岛)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.
(1)直接写出y1与x之间的函数关系式;
(2)求出y2与x之间的函数关系式;
(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?
【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,
∵函数图象过点(0,30)和(1,35),
则,
解得:,
∴y1与x之间的函数关系式为y1=5x+30;
(2)∵x=6时,y1=5×6+30=60,
∵y2的图象是过原点的抛物线,
设y2=ax2+bx,
∴点(1.35),(6.60)在抛物线y2=ax2+bx上,
∴,
解得:,
∴y2=﹣5x2+40x,
答:y2与x的函数关系式为y2=﹣5x2+40x;
(3)设小钢球和无人机的高度差为y米,
由﹣5x2+40x=0得,x=0或x=8,
①1<x≤6时,
y=y2﹣y1=﹣5x2+40x﹣5x﹣30=﹣5x2+35x﹣30=﹣5(x﹣)2+
∵a=﹣5<0,
∴抛物线开口向下,
又∵1<x≤6,
∴当x=时,y的最大值为;
②6<x≤8时,y=y1﹣y2=5x+30+5x2﹣40x=5x2﹣35x+30=5(x﹣)2﹣,
∵a=5>0,
∴抛物线开口向上,
又∵对称轴是直线x=,
∴当x>时,y随x的增大而增大,
∵6<x≤8,
∴当x=8时,y的最大值为70,
∵<70,
∴高度差的最大值为70米.
四.二次函数综合题(共17小题)
4.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.
(1)求抛物线的表达式;
(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;
(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.
【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,
∴,
解得,
∴y=x2﹣2x﹣3;
(2)连接CB交对称轴于点Q,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的对称轴为直线x=1,
∵A、B关于对称轴x=1对称,
∴AQ=BQ,
∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,
当C、B、Q三点共线时,△ACQ的周长最小,
∵C(0,﹣3),B(3,0),
设直线BC的解析式为y=kx+b,
∴,
解得,
∴y=x﹣3,
∴Q(1,﹣2);
(3)当∠BPM=90°时,PM=PB,
∴M点与A点重合,
∴M(﹣1,0);
当∠PBM=90°时,PB=BM,
过点B作x轴的垂线GH,过点P作PH⊥GH交于H,过点M作MG⊥HG交于G,
∵∠PBM=90°,
∴∠PBH+∠MBG=90°,
∵∠PBH+∠BPH=90°,
∴∠MBG=∠BPH,
∵BP=BM,
∴△BPH≌△MBG(AAS),
∴BH=MG,PH=BG=2,
设P(1,t),则M(3﹣t,﹣2),
∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,
解得t=2+或t=2﹣,
∴M(1﹣,﹣2)或(1+,﹣2),
∵M点在对称轴的左侧,
∴M点坐标为(1﹣,﹣2);
同理可得M(3+t,2),
∴2=(3+t)2﹣2(3+t)﹣3,
解得t=﹣2+(舍)或t=﹣2﹣,
∴M(1﹣,2);
综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).
5.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
(1)求抛物线的表达式;
(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),
∴,
解得:.
∴抛物线的表达式为y=﹣+x+4;
(2)点D的坐标为(﹣8,8),理由:
将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,
过点D作DE⊥x轴于点E,
∵A(﹣2,0)、B(8,0),C(0,4),
∴OA=2,OB=8,OC=4.
∵,,
∴.
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠ACO=∠CBO.
∵∠CBO+∠OCB=90°,
∴∠ACO+∠OCB=90°,
∴∠ACB=90°,
∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,
∴点D,C,B三点在一条直线上.
由轴对称的性质得:BC=CD,AB=AD.
∵OC⊥AB,DE⊥AB,
∴DE∥OC,
∴OC为△BDE的中位线,
∴OE=OB=8,DE=2OC=8,
∴D(﹣8,8);
由题意得:S△ACD=S△ABC,
∴四边形OADC的面积=S△OAC+S△ADC
=S△OAC+S△ABC
=OC•OA+AB•OC
=4×2+10×4
=4+20
=24;
(3)①当点P在BC上方时,如图,
∵∠PCB=∠ABC,
∴PC∥AB,
∴点C,P的纵坐标相等,
∴点P的纵坐标为4,
令y=4,则﹣+x+4=4,
解得:x=0或x=6,
∴P(6,4);
②当点P在BC下方时,如图,
设PC交x轴于点H,
∵∠PCB=∠ABC,
∴HC=HB.
设HB=HC=m,
∴OH=OB﹣HB=8﹣m,
在Rt△COH中,
∵OC2+OH2=CH2,
∴42+(8﹣m)2=m2,
解得:m=5,
∴OH=3,
∴H(3,0).
设直线PC的解析式为y=kx+n,
∴,
解得:.
∴y=﹣x+4.
∴,
解得:,.
∴P(,﹣).
综上,点P的坐标为(6,4)或(,﹣).
6.(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.
(1)求抛物线的表达式和t,k的值;
(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.
【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,
∴64a+22﹣6=0,
∴a=﹣,
∴y=﹣x2+x﹣6,
当y=0时,﹣t2+t﹣6=0,
解得t=3或t=8(舍),
∴t=3,
∵B(8,0)在直线y=kx﹣6上,
∴8k﹣6=0,
解得k=,
∴y=x﹣6;
(2)作PM⊥x轴交于M,
∵P点横坐标为m,
∴P(m,﹣m2+m﹣6),
∴PM=m2﹣m+6,AM=m﹣3,
在Rt△COA和Rt△AMP中,
∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,
∴∠OAC=∠APM,
∴△COA∽△AMP,
∴=,即OA•MA=CO•PM,
3(m﹣3)=6(m2﹣m+6),
解得m=3(舍)或m=10,
∴P(10,﹣);
(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,
∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,
由△PQN∽△BOC,
∴==,
∵OB=8,OC=6,BC=10,
∴QN=PN,PQ=PN,
由△CNE∽△CBO,
∴CN=EN=m,
∴CQ+PQ=CN+NQ+PQ=CN+PN,
∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,
当m=时,CQ+PQ的最大值是.
7.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.
(1)求抛物线的关系式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;
(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;
(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),
∴,解得,
∴抛物线的解析式为:y=x2﹣4x+3;
(2)如图,过P作PG∥y轴,交OE于点G,
设P(m,m2﹣4m+3),
∵OE平分∠AOB,∠AOB=90°,
∴∠AOE=45°,
∴△AOE是等腰直角三角形,
∴AE=OA=3,
∴E(3,3),
∴直线OE的解析式为:y=x,
∴G(m,m),
∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,
∴S△OPE=S△OPG+S△EPG
=PG•AE
=×3×(﹣m2+5m﹣3)
=﹣(m2﹣5m+3)
=﹣(m﹣)2+,
∵﹣<0,
∴当m=时,△OPE面积最大,
此时,P点坐标为(,﹣);
(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),
抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).
设直线x=2交OE于点DM,交AE于点N,则E(2,3),
∵直线OE的解析式为:y=x,
∴M(2,2),
∵点F在△OAE内(包括△OAE的边界),
∴2≤﹣1+h≤3,
解得3≤h≤4;
(4)设P(m,m2﹣4m+3),分四种情况:
①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,
∴∠OMP=∠PNF=90°,
∵△OPF是等腰直角三角形,
∴OP=PF,∠OPF=90°,
∴∠OPM+∠NPF=∠PFN+∠NPF=90°,
∴∠OPM=∠PFN,
∴△OMP≌△PNF(AAS),
∴OM=PN,
∵P(m,m2﹣4m+3),
则﹣m2+4m﹣3=2﹣m,
解得:m=(舍)或,
∴P的坐标为(,);
②当P在对称轴的左边,且在x轴上方时,
同理得:2﹣m=m2﹣4m+3,
解得:m1=(舍)或m2=,
∴P的坐标为(,);
③当P在对称轴的右边,且在x轴下方时,
如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,
同理得△ONP≌△PMF,
∴PN=FM,
则﹣m2+4m﹣3=m﹣2,
解得:m1=或m2=(舍);
P的坐标为(,);
④当P在对称轴的右边,且在x轴上方时,如图,
同理得m2﹣4m+3=m﹣2,
解得:m=或(舍),
P的坐标为:(,);
综上所述,点P的坐标是:(,)或(,)或(,)或(,).
方法二:作直线DE:y=x﹣2,
E(1,﹣1)是D点(1,0)绕O点顺时针旋转45°并且OD缩小2倍得到,
易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,
联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,
解得x1=,x2=,
同理可得x3=或x4=;
综上所述,点P的坐标是:(,)或(,)或(,)或(,).
8.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.
(1)求线段AC的长;
(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;
(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.
【解答】解:(1)针对于抛物线y=x2﹣2x﹣3,
令x=0,则y=﹣3,
∴C(0,﹣3);
令y=0,则x2﹣2x﹣3=0,
∴x=3或x=﹣1,
∵点A在点B的左侧,
∴A(﹣1,0),B(3,0),
∴AC==;
(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,
∵点P为该抛物线对称轴上,
∴设P(1,p),
∴PA==,PC==,
∵PA=PC,
∴=,
∴p=﹣1,
∴P(1,﹣1);
(3)由(1)知,B(3,0),C(0,﹣3),
∴OB=OC=3,
设M(m,m2﹣2m﹣3),
∵△BCM为直角三角形,
∴①当∠BCM=90°时,
如图1,过点M作MH⊥y轴于H,则HM=m,
∵OB=OC,
∴∠OCB=∠OBC=45°,
∴∠HCM=90°﹣∠OCB=45°,
∴∠HMC=45°=∠HCM,
∴CH=MH,
∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,
∴﹣m2+2m=m,
∴m=0(不符合题意,舍去)或m=1,
∴M(1,﹣4);
②当∠CBM=90°时,
过点M作M'H'⊥x轴,
同①的方法得,M'(﹣2,5);
③当∠BMC=90°时,如图2,
Ⅰ、当点M在第四象限时,
过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,
∴∠CDM=∠E=90°,
∴∠DCM+∠DMC=90°,
∵∠DMC+∠EMB=90°,
∴∠DCM=∠EMB,
∴△CDM∽△MEB,
∴,
∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),
∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,
∴,
∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,
∴M(,﹣),
Ⅱ、当点M在第三象限时,M(,﹣),
即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).
9.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.
(1)求抛物线的表达式及点C的坐标;
(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;
(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.
【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:
,
解得:.
∴抛物线的表达式为y=﹣x2+2x+3.
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点C(1,4).
(2)设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,
∵A(﹣1,0),C(1,4),
∴OA=1,OE=1,CE=4.
∴OA=OE,AC==2.
∵FO⊥AB,CE⊥AB,
∴FO∥CE,
∴OF=CE=2,F为AC的中点.
∵△DAC是以AC为底的等腰三角形,
∴DF⊥AC.
∵FO⊥AD,
∴△AFO∽△FDO.
∴.
∴.
∴OD=4.
∴D(4,0).
设直线CD的解析式为y=kx+m,
∴,
解得:.
∴直线CD的解析式为y=﹣.
∴,
解得:,.
∴P().
(3)过点P作PH⊥AB于点H,如下图,
则OH=,PH=,
∵OD=4,
∴HD=OD﹣OH=,
∴PD==.
∴PC=CD﹣PD=5﹣=.
由(2)知:AC=2.
设AF=x,AE=y,则CE=2﹣y.
∵DA=DC,
∴∠DAC=∠C.
∵∠CAB+∠AEF+∠AFE=180°,
∠AEF+∠PEF+∠CEP=180°,
又∵∠PEF=∠CAB,
∴∠CEP=∠AFE.
∴△CEP∽△AFE.
∴.
∴.
∴x=﹣+y=﹣+.
∴当y=时,x即AF有最大值.
∵OA=1,
∴OF的最大值为﹣1=.
∵点F在线段AD上,
∴点F的横坐标m的取值范围为﹣1<m≤.
10.(2021•日照)已知:抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)如图1,点P为直线BC上方抛物线上任意一点,连PC、PB、PO,PO交直线BC于点E,设=k,求当k取最大值时点P的坐标,并求此时k的值.
(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.
①求△BDQ的周长及tan∠BDQ的值;
②点M是y轴负半轴上的点,且满足tan∠BMQ=(t为大于0的常数),求点M的坐标.
【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3),
∴设y=a(x+1)(x﹣3),将C(0,3)代入,得a(0+1)(0﹣3)=3,
解得:a=﹣1,
∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,
∴抛物线的解析式为y=﹣x2+2x+3;
(2)如图1,过点P作PH∥y轴交直线BC于点H,
∴△PEH∽△OEC,
∴=,
∵=k,OC=3,
∴k=PH,
设直线BC的解析式为y=kx+n,
∵B(3,0),C(0,3),
∴,
解得:,
∴直线BC的解析式为y=﹣x+3,
设点P(t,﹣t2+2t+3),则H(t,﹣t+3),
∴PH=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,
∴k=(﹣t2+3t)=(t﹣)2+,
∵<0,
∴当t=时,k取得最大值,此时,P(,);
(3)①如图2,过点Q作QT⊥BD于点T,则∠BTQ=∠DTQ=90°,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线对称轴为直线x=1,
∴Q(1,0),
∴OQ=1,BQ=OB﹣OQ=3﹣1=2,
∵点C关于x轴的对称点为点D,
∴D(0,﹣3),
∵B(3,0),
∴OB=OD=3,
∵∠BOD=90°,
∴DQ===,
BD===3,
∴△BDQ的周长=BQ+DQ+BD=2++3;
在Rt△OBD中,∵∠BOD=90°,OB=OD,
∴∠DBO=∠BDO=45°,
∵∠BTQ=90°,
∴△BQT是等腰直角三角形,
∴QT=BT=BQ•cos∠DBO=2•cos45°=,
∴DT=BD﹣BT=3﹣=2,
∴tan∠BDQ===;
②解法1:如图3,设M(0,﹣m),则OM=m,
过点M作MF∥x轴,过点B作BN⊥BM交MQ于点N,
过点N作DN⊥y轴于点D,过点B作EF∥y轴交DN于E,交MF于F,
则∠MBN=∠BEN=∠MFB=90°,
∵∠BMF+∠MBF=∠MBF+∠NBE=90°,
∴∠BMF=∠NBE,
∴△MBF∽△BNE,
∴===tan∠BMQ=,
∴BE=×MF=,EN=×BF=,
∴DN=DE﹣EN=3﹣,
∵OQ∥DN,
∴△MQO∽△MND,
∴=,即=,
解得:m=t±,
∴M(0,﹣t)或(0,﹣﹣t).
解法2:如图4,设M(0,﹣m),则OM=m,
BM===,
MQ==,
∵tan∠BMQ=,
∴=,
∴MT=t•QT,
∵QT2+MT2=MQ2,
∴QT2+(t•QT)2=()2,
∴QT=,MT=,
∵cos∠QBT=cos∠MBO,
∴=,即=,
∴BT=,
∵BT+MT=BM,
∴+=,
整理得,(m2+3)2=4t2m2,
∵t>0,m>0,
∴m2+3=2tm,即m2﹣2tm+3=0,
当Δ=(﹣2t)2﹣4×1×3=4t2﹣12≥0,即t≥时,
m==t±,
∴M(0,﹣t)或(0,﹣﹣t).
解法3:如图5,取线段BQ的中点E,作EO′⊥BQ,使EO′=t,且点O′在x轴下方,
∴O′(2,﹣t),
连接O′B,O′Q,以O′为圆心,O′B为半径作⊙O′,交y轴于点M,
则tan∠BO′E==,
∵EB=EQ,∠O′EB=∠O′EQ=90°,O′E=O′E,
∴△O′EB≌△O′EQ(SAS),
∴∠QO′E=∠BO′E,
∴∠BMQ=∠BO′Q=∠BO′E,
∴tan∠BMQ=tan∠BO′E=,
设M(0,m),
∵O′M=O′B,
∴(2﹣0)2+(﹣t﹣m)2=12+t2,
∴m2+2tm+3=0,
解得:m==﹣t±,
∴M(0,﹣t)或(0,﹣﹣t).
11.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,抛物线的顶点为M(2,﹣),抛物线与x轴的一个交点为A(4,0),点B(2,2)与点C关于y轴对称.
(1)判断点C是否在该抛物线上,并说明理由;
(2)顺次连接AB,BC,CO,判断四边形ABCO的形状并证明;
(3)设点P是抛物线上的动点,连接PA、PC、AC,△PAC的面积S随点P的运动而变化,请探究S的大小变化并填写表格①~④处的内容;当S的值为②时,求点P的横坐标的值.
直线AC的函数表达式
S取的一个特殊值
满足条件的P点的个数
S的可能取值范围
① y=x+
6
4个
③ 0<S<
②
3个
\
10
2个
④ S>
【解答】解:(1)设抛物线解析式为y=a(x﹣2)2﹣,将A(4,0)代入,
得:0=a(4﹣2)2﹣,
解得:a=,
∴抛物线解析式为y=(x﹣2)2﹣=x2﹣x,
∵点B(2,2)与点C关于y轴对称,
∴C(﹣2,2),
当x=﹣2时,y=(﹣2﹣2)2﹣=2,
∴点C在该抛物线y=(x﹣2)2﹣上;
(2)四边形ABCO是菱形.
证明:∵B(2,2),C(﹣2,2),
∴BC∥x轴,BC=2﹣(﹣2)=4,
∵A(4,0),
∴OA=4,
∴BC=OA,
∴四边形ABCO是平行四边形,
∵OC==4,
∴OC=OA,
∴四边形ABCO是菱形.
(3)①设直线AC的函数表达式为y=kx+b,
∵A(4,0),C(﹣2,2),
∴,
解得:,
∴直线AC的函数表达式为y=x+;
故答案为:y=x+;
②当点P在直线AC下方的抛物线上时,如图2,
设P(t,t2﹣t),过点P作PH∥y轴交直线AC于点H,
则H(t,t+),
∴PH=t+﹣(t2﹣t)=﹣t2+t+,
∵满足条件的P点有3个,
∴在直线AC下方的抛物线上只有1个点P,即S△PAC的值最大,
∵S△PAC=S△PHC+S△PHA=PH•[4﹣(﹣2)]=3PH=3(﹣t2+t+)=(t﹣1)2+,
∴当t=1时,S△PAC取得最大值,此时,点P的坐标为(1,﹣),
故答案为:;
③由②知,当0<S<时,在直线AC下方的抛物线上有2个点P,满足S△PAC=S,
在直线AC上方的抛物线上一定有2个点P,满足S△PAC=S,
∴满足条件S△PAC=S的P点有4个,符合题意.
故答案为:0<S<;
④∵满足条件S△PAC=S的P点只有2个,而在直线AC上方的抛物线上一定有2个点P,满足S△PAC=S,
∴在直线AC下方的抛物线上没有点P,满足S△PAC=S,
由②知,当S>时,在直线AC下方的抛物线上没有点P,满足S△PAC=S,符合题意.
故答案为:S>.
点P的横坐标的值为1,
当点P在直线AC上方时,如图3,
∵S△PAC=S△PCH﹣S△PAH=PH•(xA﹣xC)=3PH=,
∴PH=,
∴t2﹣t﹣=,
解得:t=1±3,
综上所述,点P的横坐标为1或1﹣3或1+3.
12.(2021•烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
(1)求抛物线及直线BC的函数表达式;
(2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)由点A的坐标知,OA=2,
∵OC=2OA=4,故点C的坐标为(0,4),
将点A、B、C的坐标代入抛物线表达式得:,解得,
故抛物线的表达式为y=﹣x2+x+4;
将点B、C的坐标代入一次函数表达式得:,解得,
故直线BC的表达式为y=﹣x+4;
(2)∵点A、B关于抛物线的对称轴对称,
设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小,
理由:由函数的对称性知,AF=BF,
则AF+FC=BF+FC=BC为最小,
当x=1时,y=﹣x+4=3,故点F(1,3),
由点B、C的坐标知,OB=OC=4,
则BC=BO=4,
即点F的坐标为(1,3)、FA+FC的最小值为4;
(3)存在,理由:
设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4),
①当点Q在点P的左侧时,
如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,
由题意得:∠PEQ=90°,
∴∠PEN+∠QEM=90°,
∵∠EQM+∠QEM=90°,
∴∠PEN=∠EQM,
∴∠QME=∠ENP=90°,
∴△QME∽△ENP,
∴=tan∠EQP=tan∠OCA===,
则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,
∴==,
解得m=±(舍去负值),
当m=时,﹣m2+m+4=,
故点P的坐标为(,).
②当点Q在点P的右侧时,
分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,
则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1,
同理可得:△QME∽△ENP,
∴=2,
=2,
解得m=(舍去负值),
故m=,
故点P的坐标为(,),
故点P的坐标为(,)或(,).
13.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.
(1)求抛物线的关系式及点M的坐标;
(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;
(3)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°.
【解答】解:(1)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,
故点A、B的坐标分别为(6,0)、(0,3),
∵抛物线y=x2+bx+c经过坐标原点,故c=0,
将点A的坐标代入抛物线表达式得:0=×36+6b,解得b=﹣2,
故抛物线的表达式为y=x2﹣2x;
则抛物线的对称轴为x=3,当x=3时,y=x2﹣2x=﹣3,
则点M的坐标为(3,﹣3);
(2)如图1,过点E作EH∥y轴交AB于点H,
设点E的坐标为(x,x2﹣2x),则点H(x,﹣x+3),
则△EAB的面积=S△EHB+S△EHA=×EH×OA=6×(﹣x+3﹣x2+2x)=,
解得x=1或,
故点E的坐标为(1,﹣)或(,﹣);
(3)∵直线AB向下平移后过点M(3,﹣3),
故直线CM的表达式为y=﹣(x﹣3)﹣3=﹣x﹣,
令y=﹣x﹣=0,解得x=﹣3,
故点C(﹣3,0);
过点D作DH⊥CM于点H,
∵直线CM的表达式为y=﹣x﹣,故tan∠MCD=,则sin∠MCD=,
则DH=CDsin∠MCD=(2+3)×=,
由点D、M的坐标得,DM==,
则sin∠HMD==,
故∠HMD=45°=∠DMC=∠ADM﹣∠ACM=45°,
∴∠ADM﹣∠ACM=45°.
14.(2021•东营)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,直线y=﹣x+2过B、C两点,连接AC.
(1)求抛物线的解析式;
(2)求证:△AOC∽△ACB;
(3)点M(3,2)是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求PD+PM的最小值.
【解答】解:(1)∵直线y=﹣x+2过B、C两点,
当x=0时,代入y=﹣x+2,得y=2,即C(0,2),
当y=0时,代入y=﹣x+2,得x=4,即B(4,0),
把B(4,0),C(0,2)分别代入y=﹣x2+bx+c,
得,
解得,
∴抛物线的解析式为y=﹣x2+x+2;
(2)∵抛物线y=﹣x2+x+2与x轴交于点A,
∴﹣x2+x+2=0,
解得x1=﹣1,x2=4,
∴点A的坐标为(﹣1,0),
∴AO=1,AB=5,
在Rt△AOC中,AO=1,OC=2,
∴AC=,
∴==,
∵=,
∴=,
又∵∠OAC=∠CAB,
∴△AOC∽△ACB;
(3)设点D的坐标为(x,﹣x2+x+2),
则点E的坐标为(x,﹣x+2),
∴DE=﹣x2+x+2﹣(﹣x+2)
=﹣x2+x+2+x﹣2
=﹣x2+2x
=﹣(x﹣2)2+2,
∵﹣<0,
∴当x=2时,线段DE的长度最大,
此时,点D的坐标为(2,3),
∵C(0,2),M(3,2),
∴点C和点M关于对称轴对称,
连接CD交对称轴于点P,此时PD+PM最小,
连接CM交直线DE于点F,则∠DFC=90°,点F的坐标为(2,2),
∴CD==,
∵PD+PM=PC+PD=CD,
∴PD+PM的最小值为.
15.(2021•济宁)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.
(1)求抛物线的解析式;
(2)求证:OE⊥AB;
(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.
【解答】解:(1)∵直线y=﹣x+分别交x轴、y轴于点A,B,
∴A(3,0),B(0,),
∵抛物线y=﹣x2+bx+c经过A(3,0),D(0,3),
∴,
解得:,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线的对称轴为直线x=1,
设直线AD的解析式为y=kx+a,将A(3,0),D(0,3)代入,
得:,
解得:,
∴直线AD的解析式为y=﹣x+3,
∴E(1,2),
∵G(1,0),∠EGO=90°,
∴tan∠OEG==,
∵OA=3,OB=,∠AOB=90°,
∴tan∠OAB===,
∴tan∠OAB=tan∠OEG,
∴∠OAB=∠OEG,
∵∠OEG+∠EOG=90°,
∴∠OAB+∠EOG=90°,
∴∠AFO=90°,
∴OE⊥AB;
(3)存在.
∵A(3,0),抛物线的对称轴为直线x=1,
∴C(﹣1,0),
∴AC=3﹣(﹣1)=4,
∵OA=OD=3,∠AOD=90°,
∴AD=OA=3,
设直线CD解析式为y=mx+n,
∵C(﹣1,0),D(0,3),
∴,
解得:,
∴直线CD解析式为y=3x+3,
①当△AOM∽△ACD时,∠AOM=∠ACD,如图2,
∴OM∥CD,
∴直线OM的解析式为y=3x,
结合抛物线的解析式为y=﹣x2+2x+3,得:3x=﹣x2+2x+3,
解得:x1=,x2=,
②当△AMO∽△ACD时,如图3,
∴=,
∴AM===2,
过点M作MG⊥x轴于点G,则∠AGM=90°,
∵∠OAD=45°,
∴AG=MG=AM•sin45°=2×=2,
∴OG=OA﹣AG=3﹣2=1,
∴M(1,2),
设直线OM解析式为y=m1x,将M(1,2)代入,
得:m1=2,
∴直线OM解析式为y=2x,
结合抛物线的解析式为y=﹣x2+2x+3,得:2x=﹣x2+2x+3,
解得:x=±,
综上所述,点P的横坐标为±或.
16.(2021•菏泽)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.
(1)求该抛物线的表达式;
(2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;
(3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).
【解答】解:(1)由题意得:,解得,
故抛物线的表达式为y=x2﹣3x﹣4;
(2)由抛物线的表达式知,点C(0,﹣4),
设点P的坐标为(m,m2﹣3m﹣4),
设直线PB的表达式为y=kx+t,
则,解得,
∵CQ∥BP,
故设直线CQ的表达式为y=(m+1)x+p,
该直线过点C(0,﹣4),即p=﹣4,
故直线CQ的表达式为y=(m+1)x﹣4,
令y=(m+1)x﹣4=0,解得x=,即点Q的坐标为(,0),
则BQ=4﹣=,
设△PBQ面积为S,
则S=×BQ×(﹣yP)=﹣××(m2﹣3m﹣4)=﹣2m2+8m,
∵﹣2<0,故S有最大值,
当m=2时,△PBQ面积为8,
此时点P的坐标为(2,﹣6);
(3)存在,理由:
将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,即点A过该点,即抛物线向右平移了+1=个单位,
则函数的对称轴也平移了个单位,即平移后的抛物线的对称轴为直线x=+=3,故设点E的坐标为(3,m),
设点F(s,t),
①当AP是边时,
则点A向右平移3个单位向下平移6个单位得到点P,
同样点F(E)向右平移3个单位向下平移6个单位得到点E(F)且AE=PF(AF=PE),
则或,
解得或,
故点F的坐标为(0,)或(6,﹣4);
②当AP是对角线时,
由中点坐标公式和AP=EF得:,
解得或,
故点F的坐标为(﹣2,﹣3﹣)或(﹣2,﹣3);
综上,点F的坐标为(0,)或(6,﹣4)或(﹣2,﹣3﹣)或(﹣2,﹣3).
17.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
联立①②并解得,
故抛物线的表达式为:y=﹣x2+x+③;
(2)∵y=﹣x2+x+=﹣(x﹣1)2+3,
∴抛物线的顶点M(1,3)
令y=0,可得x=﹣2或4,
∴点D(4,0);
∵△ADR的面积是▱OABC的面积的,
∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
联立④③并解得或,
故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);
(3)(Ⅰ)当点Q在MD之间时,
作△PEQ的外接圆R,
∵∠PQE=45°,故∠PRE=90°,则△PER为等腰直角三角形,
当在直线MD上存在唯一的点Q时,圆R与直线MD相切,
∵点M、D的坐标分别为(1,3)、(4,0),
则ME=3,ED=4﹣1=3,则MD=3,
过点R作RH⊥ME于点H,
设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),
S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD•RQ×ED•yR+×ME•RH,
∴×3×3=×3×m+×3×m×3×m,解得:m=,
故点P(1,);
(Ⅱ)当点Q与点D重合时,
由点M、E、D的坐标知,ME=ED,即∠MDE=45°;
①当点P在x轴上方时,当点P与点M重合时,此时∠PQE=45°,此时点P(1,3),
②当点P在x轴下方时,同理可得:点P(1,﹣3),
综上,点P的坐标为(1,)或(1,3)或(1,﹣3).
18.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),
∴,
解得.
∴抛物线解析式为:;
(2)当x=0时,y=8,
∴C(0,8),
∴直线BC解析式为:y=﹣x+8,
∵,
∴,
过点P作PG⊥x轴,交x轴于点G,交BC于点F,
设,
∴F(t,﹣t+8),
∴,
∴,
即,
∴t1=2,t2=6,
∴P1(2,12),P2(6,8);
(3)存在,点M的坐标为:(3,8),或(3,11).
∵C(0,8),B(8,0),∠COB=90°,
∴△OBC为等腰直角三角形,
抛物线的对称轴为,
∴点E的横坐标为3,
又∵点E在直线BC上,
∴点E的纵坐标为5,
∴E(3,5),
设,
①当MN=EM,∠EMN=90°,
△NME∽△COB,则,
解得或(舍去),
∴此时点M的坐标为(3,8),
②当ME=EN,当∠MEN=90°时,
则,
解得:或(舍去),
∴此时点M的坐标为;
③当MN=EN,∠MNE=90°时,
此时△MNE与△COB相似,
此时的点M与点E关于①的结果(3,8)对称,
设M(3,m),
则m﹣8=8﹣5,
解得m=11,
∴M(3,11);
此时点M的坐标为(3,11);
故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8)或或(3,11).
19.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m=时,求点P的坐标;
②求m的最大值.
【解答】解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),
将点A、B、C的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2﹣2x﹣3;
(2)设直线BE交y轴于点M,
从抛物线表达式知,抛物线的对称轴为x=1,
∵CD∥x轴交抛物线于点D,故点D(2,﹣3),
由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCB=45°,
∵BC恰好平分∠DBE,故∠MBC=∠DBC,
而BC=BC,
故△BCD≌△BCM(ASA),
∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),
设直线BE的表达式为:y=kx+b,则,解得,
故直线BE的表达式为:y=x﹣1;
(3)过点P作PN∥x轴交BC于点N,
则△PFN∽△AFB,则,
而S△BFP=mS△BAF,则=,解得:m=PN,
①当m=时,则PN=2,
设点P(t,t2﹣2t﹣3),
由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),
故t﹣5=t2﹣2t﹣3,
解得:t=1或2,故点P(2,﹣3)或(1,﹣4);
②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,
∵<0,故m的最大值为.
20.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为 PA=PM ,其理由为: 线段垂直平分线上的点与这条线段两个端点的距离相等 .
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标
…
(﹣2,0)
(0,0)
(2,0)
(4,0)
…
P的坐标
…
(﹣2,﹣2)
(0,﹣1)
(2,﹣2)
(4,﹣5)
…
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 抛物线 .
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.
【解答】解:(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,
∴GH是AM的垂直平分线,
∵点P是GH上一点,
∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),
故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;
(2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)
∵PA=PM,
∴﹣a=,
∴a=﹣2,
∴点P(﹣2,﹣2),
当点M(4,0)时,设点P(4,b),(b<0)
∵PA=PM,
∴﹣b=,
∴b=﹣5,
∴点P(4,﹣5),
故答案为:(﹣2,﹣2),(4,﹣5);
(3)依照题意,画出图象,
猜想曲线L的形状为抛物线,
故答案为:抛物线;
(4)∵PA=PM,点P的坐标是(x,y),(y<0),
∴﹣y=,
∴y=﹣x2﹣1;
(5)∵点B(﹣1,),C(1,),
∴BC=2,OB==2,OC==2,
∴BC=OB=OC,
∴△BOC是等边三角形,
∴∠BOC=60°,
如图3,以O为圆心,OB为半径作圆O,交抛物线L于点E,连接BE,CE,
∴∠BEC=30°,
设点E(m,n),
∵点E在抛物线上,
∴n=﹣m2﹣1,
∵OE=OB=2,
∴=2,
∴n1=2﹣2,n2=2+2(舍去),
如图3,可知当点D在点E下方时,∠BDC<30°,
∴点D的纵坐标yD的取值范围为yD<2﹣2.
相关试卷
这是一份第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共47页。试卷主要包含了x﹣1与x轴有公共点,探索发现,两点,与y轴交于点C,连接BC,,连接AC,BC等内容,欢迎下载使用。
这是一份第5章圆(解答题中档题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共23页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共18页。试卷主要包含了已知等内容,欢迎下载使用。