搜索
    上传资料 赚现金
    英语朗读宝

    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习

    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第1页
    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第2页
    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第3页
    还剩70页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习

    展开

    这是一份第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共73页。试卷主要包含了之间的函数关系如图中抛物线所示,,与y轴交于点C,,连接AC、BC,,顶点为C,三点等内容,欢迎下载使用。
    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
    一.二次函数图象与系数的关系(共1小题)
    1.(2021•威海)在平面直角坐标系中,抛物线y=x2+2mx+2m2﹣m的顶点为A.
    (1)求顶点A的坐标(用含有字母m的代数式表示);
    (2)若点B(2,yB),C(5,yC)在抛物线上,且yB>yC,则m的取值范围是    ;(直接写出结果即可)
    (3)当1≤x≤3时,函数y的最小值等于6,求m的值.
    二.抛物线与x轴的交点(共1小题)
    2.(2020•东营)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
    (1)求抛物线的解析式及点A、B的坐标;
    (2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.

    三.二次函数的应用(共1小题)
    3.(2021•青岛)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.
    (1)直接写出y1与x之间的函数关系式;
    (2)求出y2与x之间的函数关系式;
    (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?

    四.二次函数综合题(共17小题)
    4.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.
    (1)求抛物线的表达式;
    (2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;
    (3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.

    5.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
    (1)求抛物线的表达式;
    (2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
    (3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.


    6.(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.
    (1)求抛物线的表达式和t,k的值;
    (2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
    (3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.

    7.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.
    (1)求抛物线的关系式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;
    (3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;
    (4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

    8.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.
    (1)求线段AC的长;
    (2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;
    (3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.

    9.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.
    (1)求抛物线的表达式及点C的坐标;
    (2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;
    (3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.

    10.(2021•日照)已知:抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点.
    (1)求抛物线的解析式;
    (2)如图1,点P为直线BC上方抛物线上任意一点,连PC、PB、PO,PO交直线BC于点E,设=k,求当k取最大值时点P的坐标,并求此时k的值.
    (3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.
    ①求△BDQ的周长及tan∠BDQ的值;
    ②点M是y轴负半轴上的点,且满足tan∠BMQ=(t为大于0的常数),求点M的坐标.

    11.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,抛物线的顶点为M(2,﹣),抛物线与x轴的一个交点为A(4,0),点B(2,2)与点C关于y轴对称.
    (1)判断点C是否在该抛物线上,并说明理由;
    (2)顺次连接AB,BC,CO,判断四边形ABCO的形状并证明;
    (3)设点P是抛物线上的动点,连接PA、PC、AC,△PAC的面积S随点P的运动而变化,请探究S的大小变化并填写表格①~④处的内容;当S的值为②时,求点P的横坐标的值.
    直线AC的函数表达式
    S取的一个特殊值
    满足条件的P点的个数
    S的可能取值范围
    ①   
    6
    4个
    ③   
    ②   
    3个
    \
    10
    2个
    ④   

    12.(2021•烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
    (1)求抛物线及直线BC的函数表达式;
    (2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
    (3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.

    13.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.
    (1)求抛物线的关系式及点M的坐标;
    (2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;
    (3)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°.

    14.(2021•东营)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,直线y=﹣x+2过B、C两点,连接AC.
    (1)求抛物线的解析式;
    (2)求证:△AOC∽△ACB;
    (3)点M(3,2)是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求PD+PM的最小值.

    15.(2021•济宁)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.
    (1)求抛物线的解析式;
    (2)求证:OE⊥AB;
    (3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.

    16.(2021•菏泽)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.

    (1)求该抛物线的表达式;
    (2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;
    (3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
    参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).
    17.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
    (1)求这条抛物线对应的函数表达式;
    (2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
    (3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.

    18.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
    (1)求抛物线的表达式;
    (2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
    (3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.

    19.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
    (1)求二次函数的表达式;
    (2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
    (3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
    ①当m=时,求点P的坐标;
    ②求m的最大值.

    20.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
    探究:
    (1)线段PA与PM的数量关系为   ,其理由为:   .
    (2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
    M的坐标

    (﹣2,0)
    (0,0)
    (2,0)
    (4,0)

    P的坐标

       
    (0,﹣1)
    (2,﹣2)
       

    猜想:
    (3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是   .
    验证:
    (4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
    应用:
    (5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.


    第3章二次函数(解答题提升题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
    参考答案与试题解析
    一.二次函数图象与系数的关系(共1小题)
    1.(2021•威海)在平面直角坐标系中,抛物线y=x2+2mx+2m2﹣m的顶点为A.
    (1)求顶点A的坐标(用含有字母m的代数式表示);
    (2)若点B(2,yB),C(5,yC)在抛物线上,且yB>yC,则m的取值范围是  m<﹣3.5 ;(直接写出结果即可)
    (3)当1≤x≤3时,函数y的最小值等于6,求m的值.
    【解答】解:(1)解法一:
    y=x2+2mx+2m2﹣m
    =(x+m)2﹣m2+2m2﹣m
    =(x+m)2+m2﹣m,
    ∴顶点A(﹣m,m2﹣m),
    解法二:
    ∵抛物线的对称轴为直线x=,
    ∴代入关系式得,y=(﹣m)2+2m(﹣m)+2m2﹣m=m2﹣m,
    ∴顶点A(﹣m,m2﹣m),
    (2)解法一:
    ∵,a=1开口向上,如图,
    ∴当对称轴大于3.5时满足题意,
    ∴﹣m>3.5,
    ∴m<﹣3.5,

    解法二:
    ∵点B(2,yB),C(5,yC)在抛物线y=x2+2mx+2m2﹣m上,
    ∴yB=4+4m+2m2﹣m,yC=25+10m+2m2﹣m,
    又∵yB>yC,
    ∴yB﹣yC=(4+4m)﹣(25+10m)>0,
    解得,m<﹣3.5,
    故答案为:m<﹣3.5;
    (3)分三种情况讨论:
    ①当对称轴x=﹣m≤1即m≥﹣1时,如图,
    当x=1时,y=6,
    ∴6=1+2m+2m2﹣m,
    整理得,2m2+m﹣5=0,
    解得,,(舍去),
    ∴,

    ②当1<﹣m≤3即﹣3≤m<﹣1时,如图,
    当x=﹣m,y=6,
    ∴6=m2﹣m,
    整理得,m2﹣m﹣6=0,
    解得,m1=﹣2,m2=3(舍),
    ∴m=﹣2,

    ③当﹣m>3即m<﹣3时,如图,
    当x=3时,y=6,
    ∴6=9+6m+2m2﹣m,
    整理得,2m2+5m+3=0,
    解得,(两个都舍去),
    综上所述:m=﹣2或m=.


    二.抛物线与x轴的交点(共1小题)
    2.(2020•东营)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
    (1)求抛物线的解析式及点A、B的坐标;
    (2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.

    【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.
    解得a=﹣.
    则该抛物线解析式为y=﹣x2+x+2.
    由于y=﹣x2+x+2=﹣(x+1)(x﹣4).
    故A(﹣1,0),B(4,0);

    (2)存在,理由如下:
    由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,
    ∴CD∥EG,
    ∴=.
    ∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).
    ∴CD=2﹣1=1.
    ∴=EG.
    设BC所在直线的解析式为y=mx+n(m≠0).
    将B(4,0),C(0,2)代入,得.
    解得.
    ∴直线BC的解析式是y=﹣x+2.
    设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.
    ∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.
    ∴=﹣(t﹣2)2+2.
    ∵<0,
    ∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).

    三.二次函数的应用(共1小题)
    3.(2021•青岛)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.
    (1)直接写出y1与x之间的函数关系式;
    (2)求出y2与x之间的函数关系式;
    (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?

    【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,
    ∵函数图象过点(0,30)和(1,35),
    则,
    解得:,
    ∴y1与x之间的函数关系式为y1=5x+30;
    (2)∵x=6时,y1=5×6+30=60,
    ∵y2的图象是过原点的抛物线,
    设y2=ax2+bx,
    ∴点(1.35),(6.60)在抛物线y2=ax2+bx上,
    ∴,
    解得:,
    ∴y2=﹣5x2+40x,
    答:y2与x的函数关系式为y2=﹣5x2+40x;
    (3)设小钢球和无人机的高度差为y米,
    由﹣5x2+40x=0得,x=0或x=8,
    ①1<x≤6时,
    y=y2﹣y1=﹣5x2+40x﹣5x﹣30=﹣5x2+35x﹣30=﹣5(x﹣)2+
    ∵a=﹣5<0,
    ∴抛物线开口向下,
    又∵1<x≤6,
    ∴当x=时,y的最大值为;
    ②6<x≤8时,y=y1﹣y2=5x+30+5x2﹣40x=5x2﹣35x+30=5(x﹣)2﹣,
    ∵a=5>0,
    ∴抛物线开口向上,
    又∵对称轴是直线x=,
    ∴当x>时,y随x的增大而增大,
    ∵6<x≤8,
    ∴当x=8时,y的最大值为70,
    ∵<70,
    ∴高度差的最大值为70米.
    四.二次函数综合题(共17小题)
    4.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.
    (1)求抛物线的表达式;
    (2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;
    (3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.

    【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,
    ∴,
    解得,
    ∴y=x2﹣2x﹣3;
    (2)连接CB交对称轴于点Q,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的对称轴为直线x=1,
    ∵A、B关于对称轴x=1对称,
    ∴AQ=BQ,
    ∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,
    当C、B、Q三点共线时,△ACQ的周长最小,
    ∵C(0,﹣3),B(3,0),
    设直线BC的解析式为y=kx+b,
    ∴,
    解得,
    ∴y=x﹣3,
    ∴Q(1,﹣2);
    (3)当∠BPM=90°时,PM=PB,
    ∴M点与A点重合,
    ∴M(﹣1,0);
    当∠PBM=90°时,PB=BM,
    过点B作x轴的垂线GH,过点P作PH⊥GH交于H,过点M作MG⊥HG交于G,
    ∵∠PBM=90°,
    ∴∠PBH+∠MBG=90°,
    ∵∠PBH+∠BPH=90°,
    ∴∠MBG=∠BPH,
    ∵BP=BM,
    ∴△BPH≌△MBG(AAS),
    ∴BH=MG,PH=BG=2,
    设P(1,t),则M(3﹣t,﹣2),
    ∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,
    解得t=2+或t=2﹣,
    ∴M(1﹣,﹣2)或(1+,﹣2),
    ∵M点在对称轴的左侧,
    ∴M点坐标为(1﹣,﹣2);
    同理可得M(3+t,2),
    ∴2=(3+t)2﹣2(3+t)﹣3,
    解得t=﹣2+(舍)或t=﹣2﹣,
    ∴M(1﹣,2);
    综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).


    5.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
    (1)求抛物线的表达式;
    (2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
    (3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.


    【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),
    ∴,
    解得:.
    ∴抛物线的表达式为y=﹣+x+4;
    (2)点D的坐标为(﹣8,8),理由:
    将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,

    过点D作DE⊥x轴于点E,
    ∵A(﹣2,0)、B(8,0),C(0,4),
    ∴OA=2,OB=8,OC=4.
    ∵,,
    ∴.
    ∵∠AOC=∠COB=90°,
    ∴△AOC∽△COB,
    ∴∠ACO=∠CBO.
    ∵∠CBO+∠OCB=90°,
    ∴∠ACO+∠OCB=90°,
    ∴∠ACB=90°,
    ∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,
    ∴点D,C,B三点在一条直线上.
    由轴对称的性质得:BC=CD,AB=AD.
    ∵OC⊥AB,DE⊥AB,
    ∴DE∥OC,
    ∴OC为△BDE的中位线,
    ∴OE=OB=8,DE=2OC=8,
    ∴D(﹣8,8);
    由题意得:S△ACD=S△ABC,
    ∴四边形OADC的面积=S△OAC+S△ADC
    =S△OAC+S△ABC
    =OC•OA+AB•OC
    =4×2+10×4
    =4+20
    =24;
    (3)①当点P在BC上方时,如图,

    ∵∠PCB=∠ABC,
    ∴PC∥AB,
    ∴点C,P的纵坐标相等,
    ∴点P的纵坐标为4,
    令y=4,则﹣+x+4=4,
    解得:x=0或x=6,
    ∴P(6,4);
    ②当点P在BC下方时,如图,

    设PC交x轴于点H,
    ∵∠PCB=∠ABC,
    ∴HC=HB.
    设HB=HC=m,
    ∴OH=OB﹣HB=8﹣m,
    在Rt△COH中,
    ∵OC2+OH2=CH2,
    ∴42+(8﹣m)2=m2,
    解得:m=5,
    ∴OH=3,
    ∴H(3,0).
    设直线PC的解析式为y=kx+n,
    ∴,
    解得:.
    ∴y=﹣x+4.
    ∴,
    解得:,.
    ∴P(,﹣).
    综上,点P的坐标为(6,4)或(,﹣).
    6.(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.
    (1)求抛物线的表达式和t,k的值;
    (2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
    (3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.

    【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,
    ∴64a+22﹣6=0,
    ∴a=﹣,
    ∴y=﹣x2+x﹣6,
    当y=0时,﹣t2+t﹣6=0,
    解得t=3或t=8(舍),
    ∴t=3,
    ∵B(8,0)在直线y=kx﹣6上,
    ∴8k﹣6=0,
    解得k=,
    ∴y=x﹣6;
    (2)作PM⊥x轴交于M,
    ∵P点横坐标为m,
    ∴P(m,﹣m2+m﹣6),
    ∴PM=m2﹣m+6,AM=m﹣3,
    在Rt△COA和Rt△AMP中,
    ∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,
    ∴∠OAC=∠APM,
    ∴△COA∽△AMP,
    ∴=,即OA•MA=CO•PM,
    3(m﹣3)=6(m2﹣m+6),
    解得m=3(舍)或m=10,
    ∴P(10,﹣);
    (3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,
    ∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,
    由△PQN∽△BOC,
    ∴==,
    ∵OB=8,OC=6,BC=10,
    ∴QN=PN,PQ=PN,
    由△CNE∽△CBO,
    ∴CN=EN=m,
    ∴CQ+PQ=CN+NQ+PQ=CN+PN,
    ∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,
    当m=时,CQ+PQ的最大值是.


    7.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.
    (1)求抛物线的关系式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;
    (3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;
    (4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

    【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),
    ∴,解得,
    ∴抛物线的解析式为:y=x2﹣4x+3;

    (2)如图,过P作PG∥y轴,交OE于点G,

    设P(m,m2﹣4m+3),
    ∵OE平分∠AOB,∠AOB=90°,
    ∴∠AOE=45°,
    ∴△AOE是等腰直角三角形,
    ∴AE=OA=3,
    ∴E(3,3),
    ∴直线OE的解析式为:y=x,
    ∴G(m,m),
    ∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,
    ∴S△OPE=S△OPG+S△EPG
    =PG•AE
    =×3×(﹣m2+5m﹣3)
    =﹣(m2﹣5m+3)
    =﹣(m﹣)2+,
    ∵﹣<0,
    ∴当m=时,△OPE面积最大,
    此时,P点坐标为(,﹣);

    (3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),
    抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).
    设直线x=2交OE于点DM,交AE于点N,则E(2,3),

    ∵直线OE的解析式为:y=x,
    ∴M(2,2),
    ∵点F在△OAE内(包括△OAE的边界),
    ∴2≤﹣1+h≤3,
    解得3≤h≤4;

    (4)设P(m,m2﹣4m+3),分四种情况:
    ①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,

    ∴∠OMP=∠PNF=90°,
    ∵△OPF是等腰直角三角形,
    ∴OP=PF,∠OPF=90°,
    ∴∠OPM+∠NPF=∠PFN+∠NPF=90°,
    ∴∠OPM=∠PFN,
    ∴△OMP≌△PNF(AAS),
    ∴OM=PN,
    ∵P(m,m2﹣4m+3),
    则﹣m2+4m﹣3=2﹣m,
    解得:m=(舍)或,
    ∴P的坐标为(,);
    ②当P在对称轴的左边,且在x轴上方时,
    同理得:2﹣m=m2﹣4m+3,
    解得:m1=(舍)或m2=,
    ∴P的坐标为(,);
    ③当P在对称轴的右边,且在x轴下方时,

    如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,
    同理得△ONP≌△PMF,
    ∴PN=FM,
    则﹣m2+4m﹣3=m﹣2,
    解得:m1=或m2=(舍);
    P的坐标为(,);
    ④当P在对称轴的右边,且在x轴上方时,如图,

    同理得m2﹣4m+3=m﹣2,
    解得:m=或(舍),
    P的坐标为:(,);
    综上所述,点P的坐标是:(,)或(,)或(,)或(,).
    方法二:作直线DE:y=x﹣2,

    E(1,﹣1)是D点(1,0)绕O点顺时针旋转45°并且OD缩小2倍得到,
    易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,
    联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,
    解得x1=,x2=,
    同理可得x3=或x4=;
    综上所述,点P的坐标是:(,)或(,)或(,)或(,).
    8.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.
    (1)求线段AC的长;
    (2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;
    (3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.

    【解答】解:(1)针对于抛物线y=x2﹣2x﹣3,
    令x=0,则y=﹣3,
    ∴C(0,﹣3);
    令y=0,则x2﹣2x﹣3=0,
    ∴x=3或x=﹣1,
    ∵点A在点B的左侧,
    ∴A(﹣1,0),B(3,0),
    ∴AC==;

    (2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,
    ∵点P为该抛物线对称轴上,
    ∴设P(1,p),
    ∴PA==,PC==,
    ∵PA=PC,
    ∴=,
    ∴p=﹣1,
    ∴P(1,﹣1);

    (3)由(1)知,B(3,0),C(0,﹣3),
    ∴OB=OC=3,
    设M(m,m2﹣2m﹣3),
    ∵△BCM为直角三角形,
    ∴①当∠BCM=90°时,
    如图1,过点M作MH⊥y轴于H,则HM=m,
    ∵OB=OC,
    ∴∠OCB=∠OBC=45°,
    ∴∠HCM=90°﹣∠OCB=45°,
    ∴∠HMC=45°=∠HCM,
    ∴CH=MH,
    ∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,
    ∴﹣m2+2m=m,
    ∴m=0(不符合题意,舍去)或m=1,
    ∴M(1,﹣4);
    ②当∠CBM=90°时,
    过点M作M'H'⊥x轴,
    同①的方法得,M'(﹣2,5);
    ③当∠BMC=90°时,如图2,
    Ⅰ、当点M在第四象限时,

    过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,
    ∴∠CDM=∠E=90°,
    ∴∠DCM+∠DMC=90°,
    ∵∠DMC+∠EMB=90°,
    ∴∠DCM=∠EMB,
    ∴△CDM∽△MEB,
    ∴,
    ∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),
    ∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,
    ∴,
    ∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,
    ∴M(,﹣),
    Ⅱ、当点M在第三象限时,M(,﹣),
    即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).

    9.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.
    (1)求抛物线的表达式及点C的坐标;
    (2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;
    (3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.

    【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:

    解得:.
    ∴抛物线的表达式为y=﹣x2+2x+3.
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴顶点C(1,4).
    (2)设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,

    ∵A(﹣1,0),C(1,4),
    ∴OA=1,OE=1,CE=4.
    ∴OA=OE,AC==2.
    ∵FO⊥AB,CE⊥AB,
    ∴FO∥CE,
    ∴OF=CE=2,F为AC的中点.
    ∵△DAC是以AC为底的等腰三角形,
    ∴DF⊥AC.
    ∵FO⊥AD,
    ∴△AFO∽△FDO.
    ∴.
    ∴.
    ∴OD=4.
    ∴D(4,0).
    设直线CD的解析式为y=kx+m,
    ∴,
    解得:.
    ∴直线CD的解析式为y=﹣.
    ∴,
    解得:,.
    ∴P().
    (3)过点P作PH⊥AB于点H,如下图,

    则OH=,PH=,
    ∵OD=4,
    ∴HD=OD﹣OH=,
    ∴PD==.
    ∴PC=CD﹣PD=5﹣=.
    由(2)知:AC=2.
    设AF=x,AE=y,则CE=2﹣y.
    ∵DA=DC,
    ∴∠DAC=∠C.
    ∵∠CAB+∠AEF+∠AFE=180°,
    ∠AEF+∠PEF+∠CEP=180°,
    又∵∠PEF=∠CAB,
    ∴∠CEP=∠AFE.
    ∴△CEP∽△AFE.
    ∴.
    ∴.
    ∴x=﹣+y=﹣+.
    ∴当y=时,x即AF有最大值.
    ∵OA=1,
    ∴OF的最大值为﹣1=.
    ∵点F在线段AD上,
    ∴点F的横坐标m的取值范围为﹣1<m≤.
    10.(2021•日照)已知:抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点.
    (1)求抛物线的解析式;
    (2)如图1,点P为直线BC上方抛物线上任意一点,连PC、PB、PO,PO交直线BC于点E,设=k,求当k取最大值时点P的坐标,并求此时k的值.
    (3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.
    ①求△BDQ的周长及tan∠BDQ的值;
    ②点M是y轴负半轴上的点,且满足tan∠BMQ=(t为大于0的常数),求点M的坐标.

    【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3),
    ∴设y=a(x+1)(x﹣3),将C(0,3)代入,得a(0+1)(0﹣3)=3,
    解得:a=﹣1,
    ∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    (2)如图1,过点P作PH∥y轴交直线BC于点H,
    ∴△PEH∽△OEC,
    ∴=,
    ∵=k,OC=3,
    ∴k=PH,
    设直线BC的解析式为y=kx+n,
    ∵B(3,0),C(0,3),
    ∴,
    解得:,
    ∴直线BC的解析式为y=﹣x+3,
    设点P(t,﹣t2+2t+3),则H(t,﹣t+3),
    ∴PH=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,
    ∴k=(﹣t2+3t)=(t﹣)2+,
    ∵<0,
    ∴当t=时,k取得最大值,此时,P(,);
    (3)①如图2,过点Q作QT⊥BD于点T,则∠BTQ=∠DTQ=90°,
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴抛物线对称轴为直线x=1,
    ∴Q(1,0),
    ∴OQ=1,BQ=OB﹣OQ=3﹣1=2,
    ∵点C关于x轴的对称点为点D,
    ∴D(0,﹣3),
    ∵B(3,0),
    ∴OB=OD=3,
    ∵∠BOD=90°,
    ∴DQ===,
    BD===3,
    ∴△BDQ的周长=BQ+DQ+BD=2++3;
    在Rt△OBD中,∵∠BOD=90°,OB=OD,
    ∴∠DBO=∠BDO=45°,
    ∵∠BTQ=90°,
    ∴△BQT是等腰直角三角形,
    ∴QT=BT=BQ•cos∠DBO=2•cos45°=,
    ∴DT=BD﹣BT=3﹣=2,
    ∴tan∠BDQ===;
    ②解法1:如图3,设M(0,﹣m),则OM=m,
    过点M作MF∥x轴,过点B作BN⊥BM交MQ于点N,
    过点N作DN⊥y轴于点D,过点B作EF∥y轴交DN于E,交MF于F,
    则∠MBN=∠BEN=∠MFB=90°,
    ∵∠BMF+∠MBF=∠MBF+∠NBE=90°,
    ∴∠BMF=∠NBE,
    ∴△MBF∽△BNE,
    ∴===tan∠BMQ=,
    ∴BE=×MF=,EN=×BF=,
    ∴DN=DE﹣EN=3﹣,
    ∵OQ∥DN,
    ∴△MQO∽△MND,
    ∴=,即=,
    解得:m=t±,
    ∴M(0,﹣t)或(0,﹣﹣t).
    解法2:如图4,设M(0,﹣m),则OM=m,
    BM===,
    MQ==,
    ∵tan∠BMQ=,
    ∴=,
    ∴MT=t•QT,
    ∵QT2+MT2=MQ2,
    ∴QT2+(t•QT)2=()2,
    ∴QT=,MT=,
    ∵cos∠QBT=cos∠MBO,
    ∴=,即=,
    ∴BT=,
    ∵BT+MT=BM,
    ∴+=,
    整理得,(m2+3)2=4t2m2,
    ∵t>0,m>0,
    ∴m2+3=2tm,即m2﹣2tm+3=0,
    当Δ=(﹣2t)2﹣4×1×3=4t2﹣12≥0,即t≥时,
    m==t±,
    ∴M(0,﹣t)或(0,﹣﹣t).
    解法3:如图5,取线段BQ的中点E,作EO′⊥BQ,使EO′=t,且点O′在x轴下方,
    ∴O′(2,﹣t),
    连接O′B,O′Q,以O′为圆心,O′B为半径作⊙O′,交y轴于点M,
    则tan∠BO′E==,
    ∵EB=EQ,∠O′EB=∠O′EQ=90°,O′E=O′E,
    ∴△O′EB≌△O′EQ(SAS),
    ∴∠QO′E=∠BO′E,
    ∴∠BMQ=∠BO′Q=∠BO′E,
    ∴tan∠BMQ=tan∠BO′E=,
    设M(0,m),
    ∵O′M=O′B,
    ∴(2﹣0)2+(﹣t﹣m)2=12+t2,
    ∴m2+2tm+3=0,
    解得:m==﹣t±,
    ∴M(0,﹣t)或(0,﹣﹣t).





    11.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,抛物线的顶点为M(2,﹣),抛物线与x轴的一个交点为A(4,0),点B(2,2)与点C关于y轴对称.
    (1)判断点C是否在该抛物线上,并说明理由;
    (2)顺次连接AB,BC,CO,判断四边形ABCO的形状并证明;
    (3)设点P是抛物线上的动点,连接PA、PC、AC,△PAC的面积S随点P的运动而变化,请探究S的大小变化并填写表格①~④处的内容;当S的值为②时,求点P的横坐标的值.
    直线AC的函数表达式
    S取的一个特殊值
    满足条件的P点的个数
    S的可能取值范围
    ① y=x+ 
    6
    4个
    ③ 0<S< 
    ②  
    3个
    \
    10
    2个
    ④ S> 

    【解答】解:(1)设抛物线解析式为y=a(x﹣2)2﹣,将A(4,0)代入,
    得:0=a(4﹣2)2﹣,
    解得:a=,
    ∴抛物线解析式为y=(x﹣2)2﹣=x2﹣x,
    ∵点B(2,2)与点C关于y轴对称,
    ∴C(﹣2,2),
    当x=﹣2时,y=(﹣2﹣2)2﹣=2,
    ∴点C在该抛物线y=(x﹣2)2﹣上;
    (2)四边形ABCO是菱形.
    证明:∵B(2,2),C(﹣2,2),
    ∴BC∥x轴,BC=2﹣(﹣2)=4,
    ∵A(4,0),
    ∴OA=4,
    ∴BC=OA,
    ∴四边形ABCO是平行四边形,
    ∵OC==4,
    ∴OC=OA,
    ∴四边形ABCO是菱形.
    (3)①设直线AC的函数表达式为y=kx+b,
    ∵A(4,0),C(﹣2,2),
    ∴,
    解得:,
    ∴直线AC的函数表达式为y=x+;
    故答案为:y=x+;
    ②当点P在直线AC下方的抛物线上时,如图2,
    设P(t,t2﹣t),过点P作PH∥y轴交直线AC于点H,
    则H(t,t+),
    ∴PH=t+﹣(t2﹣t)=﹣t2+t+,
    ∵满足条件的P点有3个,
    ∴在直线AC下方的抛物线上只有1个点P,即S△PAC的值最大,
    ∵S△PAC=S△PHC+S△PHA=PH•[4﹣(﹣2)]=3PH=3(﹣t2+t+)=(t﹣1)2+,
    ∴当t=1时,S△PAC取得最大值,此时,点P的坐标为(1,﹣),
    故答案为:;
    ③由②知,当0<S<时,在直线AC下方的抛物线上有2个点P,满足S△PAC=S,
    在直线AC上方的抛物线上一定有2个点P,满足S△PAC=S,
    ∴满足条件S△PAC=S的P点有4个,符合题意.
    故答案为:0<S<;
    ④∵满足条件S△PAC=S的P点只有2个,而在直线AC上方的抛物线上一定有2个点P,满足S△PAC=S,
    ∴在直线AC下方的抛物线上没有点P,满足S△PAC=S,
    由②知,当S>时,在直线AC下方的抛物线上没有点P,满足S△PAC=S,符合题意.
    故答案为:S>.
    点P的横坐标的值为1,
    当点P在直线AC上方时,如图3,
    ∵S△PAC=S△PCH﹣S△PAH=PH•(xA﹣xC)=3PH=,
    ∴PH=,
    ∴t2﹣t﹣=,
    解得:t=1±3,
    综上所述,点P的横坐标为1或1﹣3或1+3.



    12.(2021•烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
    (1)求抛物线及直线BC的函数表达式;
    (2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
    (3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.

    【解答】解:(1)由点A的坐标知,OA=2,
    ∵OC=2OA=4,故点C的坐标为(0,4),
    将点A、B、C的坐标代入抛物线表达式得:,解得,
    故抛物线的表达式为y=﹣x2+x+4;
    将点B、C的坐标代入一次函数表达式得:,解得,
    故直线BC的表达式为y=﹣x+4;

    (2)∵点A、B关于抛物线的对称轴对称,
    设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小,

    理由:由函数的对称性知,AF=BF,
    则AF+FC=BF+FC=BC为最小,
    当x=1时,y=﹣x+4=3,故点F(1,3),
    由点B、C的坐标知,OB=OC=4,
    则BC=BO=4,
    即点F的坐标为(1,3)、FA+FC的最小值为4;

    (3)存在,理由:
    设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4),
    ①当点Q在点P的左侧时,
    如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,

    由题意得:∠PEQ=90°,
    ∴∠PEN+∠QEM=90°,
    ∵∠EQM+∠QEM=90°,
    ∴∠PEN=∠EQM,
    ∴∠QME=∠ENP=90°,
    ∴△QME∽△ENP,
    ∴=tan∠EQP=tan∠OCA===,
    则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,
    ∴==,
    解得m=±(舍去负值),
    当m=时,﹣m2+m+4=,
    故点P的坐标为(,).
    ②当点Q在点P的右侧时,

    分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,
    则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1,
    同理可得:△QME∽△ENP,
    ∴=2,
    =2,
    解得m=(舍去负值),
    故m=,
    故点P的坐标为(,),
    故点P的坐标为(,)或(,).
    13.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.
    (1)求抛物线的关系式及点M的坐标;
    (2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;
    (3)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°.

    【解答】解:(1)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,
    故点A、B的坐标分别为(6,0)、(0,3),
    ∵抛物线y=x2+bx+c经过坐标原点,故c=0,
    将点A的坐标代入抛物线表达式得:0=×36+6b,解得b=﹣2,
    故抛物线的表达式为y=x2﹣2x;
    则抛物线的对称轴为x=3,当x=3时,y=x2﹣2x=﹣3,
    则点M的坐标为(3,﹣3);

    (2)如图1,过点E作EH∥y轴交AB于点H,

    设点E的坐标为(x,x2﹣2x),则点H(x,﹣x+3),
    则△EAB的面积=S△EHB+S△EHA=×EH×OA=6×(﹣x+3﹣x2+2x)=,
    解得x=1或,
    故点E的坐标为(1,﹣)或(,﹣);

    (3)∵直线AB向下平移后过点M(3,﹣3),
    故直线CM的表达式为y=﹣(x﹣3)﹣3=﹣x﹣,
    令y=﹣x﹣=0,解得x=﹣3,
    故点C(﹣3,0);
    过点D作DH⊥CM于点H,

    ∵直线CM的表达式为y=﹣x﹣,故tan∠MCD=,则sin∠MCD=,
    则DH=CDsin∠MCD=(2+3)×=,
    由点D、M的坐标得,DM==,
    则sin∠HMD==,
    故∠HMD=45°=∠DMC=∠ADM﹣∠ACM=45°,
    ∴∠ADM﹣∠ACM=45°.
    14.(2021•东营)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,直线y=﹣x+2过B、C两点,连接AC.
    (1)求抛物线的解析式;
    (2)求证:△AOC∽△ACB;
    (3)点M(3,2)是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求PD+PM的最小值.

    【解答】解:(1)∵直线y=﹣x+2过B、C两点,
    当x=0时,代入y=﹣x+2,得y=2,即C(0,2),
    当y=0时,代入y=﹣x+2,得x=4,即B(4,0),
    把B(4,0),C(0,2)分别代入y=﹣x2+bx+c,
    得,
    解得,
    ∴抛物线的解析式为y=﹣x2+x+2;
    (2)∵抛物线y=﹣x2+x+2与x轴交于点A,
    ∴﹣x2+x+2=0,
    解得x1=﹣1,x2=4,
    ∴点A的坐标为(﹣1,0),
    ∴AO=1,AB=5,
    在Rt△AOC中,AO=1,OC=2,
    ∴AC=,
    ∴==,
    ∵=,
    ∴=,
    又∵∠OAC=∠CAB,
    ∴△AOC∽△ACB;
    (3)设点D的坐标为(x,﹣x2+x+2),
    则点E的坐标为(x,﹣x+2),
    ∴DE=﹣x2+x+2﹣(﹣x+2)
    =﹣x2+x+2+x﹣2
    =﹣x2+2x
    =﹣(x﹣2)2+2,
    ∵﹣<0,
    ∴当x=2时,线段DE的长度最大,
    此时,点D的坐标为(2,3),
    ∵C(0,2),M(3,2),
    ∴点C和点M关于对称轴对称,
    连接CD交对称轴于点P,此时PD+PM最小,
    连接CM交直线DE于点F,则∠DFC=90°,点F的坐标为(2,2),
    ∴CD==,
    ∵PD+PM=PC+PD=CD,
    ∴PD+PM的最小值为.

    15.(2021•济宁)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.
    (1)求抛物线的解析式;
    (2)求证:OE⊥AB;
    (3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.

    【解答】解:(1)∵直线y=﹣x+分别交x轴、y轴于点A,B,
    ∴A(3,0),B(0,),
    ∵抛物线y=﹣x2+bx+c经过A(3,0),D(0,3),
    ∴,
    解得:,
    ∴该抛物线的解析式为y=﹣x2+2x+3;
    (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴抛物线的对称轴为直线x=1,
    设直线AD的解析式为y=kx+a,将A(3,0),D(0,3)代入,
    得:,
    解得:,
    ∴直线AD的解析式为y=﹣x+3,
    ∴E(1,2),
    ∵G(1,0),∠EGO=90°,
    ∴tan∠OEG==,
    ∵OA=3,OB=,∠AOB=90°,
    ∴tan∠OAB===,
    ∴tan∠OAB=tan∠OEG,
    ∴∠OAB=∠OEG,
    ∵∠OEG+∠EOG=90°,
    ∴∠OAB+∠EOG=90°,
    ∴∠AFO=90°,
    ∴OE⊥AB;
    (3)存在.
    ∵A(3,0),抛物线的对称轴为直线x=1,
    ∴C(﹣1,0),
    ∴AC=3﹣(﹣1)=4,
    ∵OA=OD=3,∠AOD=90°,
    ∴AD=OA=3,
    设直线CD解析式为y=mx+n,
    ∵C(﹣1,0),D(0,3),
    ∴,
    解得:,
    ∴直线CD解析式为y=3x+3,
    ①当△AOM∽△ACD时,∠AOM=∠ACD,如图2,
    ∴OM∥CD,
    ∴直线OM的解析式为y=3x,
    结合抛物线的解析式为y=﹣x2+2x+3,得:3x=﹣x2+2x+3,
    解得:x1=,x2=,
    ②当△AMO∽△ACD时,如图3,
    ∴=,
    ∴AM===2,
    过点M作MG⊥x轴于点G,则∠AGM=90°,
    ∵∠OAD=45°,
    ∴AG=MG=AM•sin45°=2×=2,
    ∴OG=OA﹣AG=3﹣2=1,
    ∴M(1,2),
    设直线OM解析式为y=m1x,将M(1,2)代入,
    得:m1=2,
    ∴直线OM解析式为y=2x,
    结合抛物线的解析式为y=﹣x2+2x+3,得:2x=﹣x2+2x+3,
    解得:x=±,
    综上所述,点P的横坐标为±或.



    16.(2021•菏泽)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.

    (1)求该抛物线的表达式;
    (2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;
    (3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
    参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).
    【解答】解:(1)由题意得:,解得,
    故抛物线的表达式为y=x2﹣3x﹣4;

    (2)由抛物线的表达式知,点C(0,﹣4),
    设点P的坐标为(m,m2﹣3m﹣4),
    设直线PB的表达式为y=kx+t,
    则,解得,
    ∵CQ∥BP,
    故设直线CQ的表达式为y=(m+1)x+p,
    该直线过点C(0,﹣4),即p=﹣4,
    故直线CQ的表达式为y=(m+1)x﹣4,
    令y=(m+1)x﹣4=0,解得x=,即点Q的坐标为(,0),
    则BQ=4﹣=,
    设△PBQ面积为S,
    则S=×BQ×(﹣yP)=﹣××(m2﹣3m﹣4)=﹣2m2+8m,
    ∵﹣2<0,故S有最大值,
    当m=2时,△PBQ面积为8,
    此时点P的坐标为(2,﹣6);

    (3)存在,理由:
    将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,即点A过该点,即抛物线向右平移了+1=个单位,
    则函数的对称轴也平移了个单位,即平移后的抛物线的对称轴为直线x=+=3,故设点E的坐标为(3,m),
    设点F(s,t),
    ①当AP是边时,
    则点A向右平移3个单位向下平移6个单位得到点P,
    同样点F(E)向右平移3个单位向下平移6个单位得到点E(F)且AE=PF(AF=PE),
    则或,
    解得或,
    故点F的坐标为(0,)或(6,﹣4);
    ②当AP是对角线时,
    由中点坐标公式和AP=EF得:,
    解得或,
    故点F的坐标为(﹣2,﹣3﹣)或(﹣2,﹣3);
    综上,点F的坐标为(0,)或(6,﹣4)或(﹣2,﹣3﹣)或(﹣2,﹣3).
    17.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
    (1)求这条抛物线对应的函数表达式;
    (2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
    (3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.

    【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
    将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
    联立①②并解得,
    故抛物线的表达式为:y=﹣x2+x+③;

    (2)∵y=﹣x2+x+=﹣(x﹣1)2+3,
    ∴抛物线的顶点M(1,3)
    令y=0,可得x=﹣2或4,
    ∴点D(4,0);
    ∵△ADR的面积是▱OABC的面积的,
    ∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
    联立④③并解得或,
    故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);

    (3)(Ⅰ)当点Q在MD之间时,
    作△PEQ的外接圆R,
    ∵∠PQE=45°,故∠PRE=90°,则△PER为等腰直角三角形,
    当在直线MD上存在唯一的点Q时,圆R与直线MD相切,
    ∵点M、D的坐标分别为(1,3)、(4,0),
    则ME=3,ED=4﹣1=3,则MD=3,
    过点R作RH⊥ME于点H,

    设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),
    S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD•RQ×ED•yR+×ME•RH,
    ∴×3×3=×3×m+×3×m×3×m,解得:m=,
    故点P(1,);
    (Ⅱ)当点Q与点D重合时,
    由点M、E、D的坐标知,ME=ED,即∠MDE=45°;
    ①当点P在x轴上方时,当点P与点M重合时,此时∠PQE=45°,此时点P(1,3),
    ②当点P在x轴下方时,同理可得:点P(1,﹣3),
    综上,点P的坐标为(1,)或(1,3)或(1,﹣3).
    18.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
    (1)求抛物线的表达式;
    (2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
    (3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.

    【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),
    ∴,
    解得.
    ∴抛物线解析式为:;

    (2)当x=0时,y=8,
    ∴C(0,8),
    ∴直线BC解析式为:y=﹣x+8,
    ∵,
    ∴,
    过点P作PG⊥x轴,交x轴于点G,交BC于点F,
    设,
    ∴F(t,﹣t+8),
    ∴,
    ∴,
    即,
    ∴t1=2,t2=6,
    ∴P1(2,12),P2(6,8);


    (3)存在,点M的坐标为:(3,8),或(3,11).
    ∵C(0,8),B(8,0),∠COB=90°,
    ∴△OBC为等腰直角三角形,
    抛物线的对称轴为,
    ∴点E的横坐标为3,
    又∵点E在直线BC上,
    ∴点E的纵坐标为5,
    ∴E(3,5),
    设,
    ①当MN=EM,∠EMN=90°,
    △NME∽△COB,则,
    解得或(舍去),
    ∴此时点M的坐标为(3,8),

    ②当ME=EN,当∠MEN=90°时,
    则,
    解得:或(舍去),
    ∴此时点M的坐标为;

    ③当MN=EN,∠MNE=90°时,
    此时△MNE与△COB相似,
    此时的点M与点E关于①的结果(3,8)对称,
    设M(3,m),
    则m﹣8=8﹣5,
    解得m=11,
    ∴M(3,11);
    此时点M的坐标为(3,11);

    故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8)或或(3,11).
    19.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
    (1)求二次函数的表达式;
    (2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
    (3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
    ①当m=时,求点P的坐标;
    ②求m的最大值.

    【解答】解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),
    将点A、B、C的坐标代入抛物线表达式得,解得,
    故抛物线的表达式为:y=x2﹣2x﹣3;

    (2)设直线BE交y轴于点M,

    从抛物线表达式知,抛物线的对称轴为x=1,
    ∵CD∥x轴交抛物线于点D,故点D(2,﹣3),
    由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCB=45°,
    ∵BC恰好平分∠DBE,故∠MBC=∠DBC,
    而BC=BC,
    故△BCD≌△BCM(ASA),
    ∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),
    设直线BE的表达式为:y=kx+b,则,解得,
    故直线BE的表达式为:y=x﹣1;

    (3)过点P作PN∥x轴交BC于点N,

    则△PFN∽△AFB,则,
    而S△BFP=mS△BAF,则=,解得:m=PN,
    ①当m=时,则PN=2,
    设点P(t,t2﹣2t﹣3),
    由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),
    故t﹣5=t2﹣2t﹣3,
    解得:t=1或2,故点P(2,﹣3)或(1,﹣4);
    ②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,
    ∵<0,故m的最大值为.
    20.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
    探究:
    (1)线段PA与PM的数量关系为 PA=PM ,其理由为: 线段垂直平分线上的点与这条线段两个端点的距离相等 .
    (2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
    M的坐标

    (﹣2,0)
    (0,0)
    (2,0)
    (4,0)

    P的坐标

     (﹣2,﹣2) 
    (0,﹣1)
    (2,﹣2)
     (4,﹣5) 

    猜想:
    (3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 抛物线 .
    验证:
    (4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
    应用:
    (5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.

    【解答】解:(1)∵分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,
    ∴GH是AM的垂直平分线,
    ∵点P是GH上一点,
    ∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),
    故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;
    (2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)
    ∵PA=PM,
    ∴﹣a=,
    ∴a=﹣2,
    ∴点P(﹣2,﹣2),
    当点M(4,0)时,设点P(4,b),(b<0)
    ∵PA=PM,
    ∴﹣b=,
    ∴b=﹣5,
    ∴点P(4,﹣5),
    故答案为:(﹣2,﹣2),(4,﹣5);
    (3)依照题意,画出图象,

    猜想曲线L的形状为抛物线,
    故答案为:抛物线;
    (4)∵PA=PM,点P的坐标是(x,y),(y<0),
    ∴﹣y=,
    ∴y=﹣x2﹣1;
    (5)∵点B(﹣1,),C(1,),
    ∴BC=2,OB==2,OC==2,
    ∴BC=OB=OC,
    ∴△BOC是等边三角形,
    ∴∠BOC=60°,
    如图3,以O为圆心,OB为半径作圆O,交抛物线L于点E,连接BE,CE,

    ∴∠BEC=30°,
    设点E(m,n),
    ∵点E在抛物线上,
    ∴n=﹣m2﹣1,
    ∵OE=OB=2,
    ∴=2,
    ∴n1=2﹣2,n2=2+2(舍去),
    如图3,可知当点D在点E下方时,∠BDC<30°,
    ∴点D的纵坐标yD的取值范围为yD<2﹣2.

    相关试卷

    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习:

    这是一份第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共47页。试卷主要包含了x﹣1与x轴有公共点,探索发现,两点,与y轴交于点C,连接BC,,连接AC,BC等内容,欢迎下载使用。

    第5章圆(解答题中档题)-鲁教版(五四制)九年级数学下册期末复习培优练习:

    这是一份第5章圆(解答题中档题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共23页。试卷主要包含了已知等内容,欢迎下载使用。

    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习:

    这是一份第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共18页。试卷主要包含了已知等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map