第1章二次函数+解答题压轴题【湘教版-中考真题】九年级数学下册期末复习培优练习(湖南)
展开第1章二次函数 解答题压轴题【湘教版-中考真题】九年级数学下册期末复习培优练习(湖南)
一.二次函数综合题(共17小题)
1.(2022•益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.
(1)求a的值;
(2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?
(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.
2.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.
(1)请直接写出点A,B,C的坐标;
(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.
(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.
3.(2022•湘潭)已知抛物线y=x2+bx+c.
(1)如图①,若抛物线与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.
(Ⅰ)求该抛物线所表示的二次函数表达式;
(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.
(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.
4.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.
(1)写出图象W位于线段AB上方部分对应的函数关系式;
(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;
(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
5.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).
(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;
(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.
①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;
②若NP=2BP,令T=c,求T的最小值.
阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.
6.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.
(1)求抛物线和直线BC的函数表达式.
(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.
7.(2021•湘西州)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的解析式;
(2)连接BC,求直线BC的解析式;
(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;
(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
8.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r= ,s= ,t= (将正确答案填在相应的横线上);
(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;
(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
9.(2020•益阳)如图,在平面直角坐标系中,点F的坐标是(4,2),点P为一个动点,过点P作x轴的垂线PH,垂足为H,点P在运动过程中始终满足PF=PH.
【提示:平面直角坐标系内点M、N的坐标分别为(x1,y1)、(x2,y2),则MN2=(x2﹣x1)2+(y2﹣y1)2】
(1)判断点P在运动过程中是否经过点C(0,5);
(2)设动点P的坐标为(x,y),求y关于x的函数表达式;填写下表,并在给定坐标系中画出该函数的图象;
x
…
0
2
4
6
8
…
y
…
…
(3)点C关于x轴的对称点为C',点P在直线C'F的下方时,求线段PF长度的取值范围.
10.(2020•娄底)如图,抛物线经过点A(﹣3,0)、B(1,0)、C(0,3).
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上的动点,当﹣3<m<0时,试确定m的值,使得△PAC的面积最大;
(3)抛物线上是否存在不同于点B的点D,满足DA2﹣DC2=6,若存在,请求出点D的坐标;若不存在,请说明理由.
11.(2020•郴州)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.
(1)求抛物线和直线BC的表达式;
(2)点P是抛物线上的一个动点.
①如图1,若点P在第一象限内,连接PA,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;
②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.
12.(2020•长沙)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.
(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.
①y=2x( );
②y=(m≠0)( );
③y=3x﹣1( ).
(2)若点A(1,m)与点B(n,﹣4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.
(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b﹣a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.
13.(2020•邵阳)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;
(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.
14.(2020•岳阳)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x﹣)2+与x轴交于点A(﹣,0)和点B,与y轴交于点C.
(1)求抛物线F1的表达式;
(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.
①求点D的坐标;
②判断△BCD的形状,并说明理由;
(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.
15.(2020•怀化)如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.
(1)求点C及顶点M的坐标.
(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.
(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.
(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.
16.(2020•张家界)如图,抛物线y=ax2﹣6x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+5经过点B,C.
(1)求抛物线的解析式;
(2)抛物线的对称轴l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由;
(3)在直线BC上是否存在点M,使AM与直线BC的夹角等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.
17.(2020•常德)如图,已知抛物线y=ax2过点A(﹣3,).
(1)求抛物线的解析式;
(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;
(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.
第1章二次函数 解答题压轴题【湘教版-中考真题】九年级数学下册期末复习培优练习(湖南)
参考答案与试题解析
一.二次函数综合题(共17小题)
1.(2022•益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.
(1)求a的值;
(2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?
(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.
【解答】解:(1)由题意可知,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P的坐标为(m,2m2),
∵点P在抛物线F:y=ax2上,
∴am2=2m2,
∴a=2.
(2)∵直线x=t与抛物线E,F分别交于点A,B,
∴yA=﹣(t﹣m)2+2m2=﹣t2+2mt+m2,yB=2t2,
∴s=yA﹣yB
=﹣t2+2mt+m2﹣2t2
=﹣3t2+2mt+m2
=﹣3(t﹣m)2+m2,
∵﹣3<0,
∴当t=m时,s的最大值为m2,
∵s的最大值为4,
∴m2=4,解得m=±,
∵m<0,
∴m=﹣.
(3)存在,理由如下:
设点M的坐标为n,则M(n,2n2),
∴Q(2n﹣m,4n2﹣2m2),
∵点Q在x轴正半轴上,
∴2n﹣m>0且4n2﹣2m2=0,
∴n=﹣m,
∴M(﹣m,m2),Q(﹣m﹣m,0).
如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,
∴∠K=∠N=90°,∠QPK+∠PQK=90°,
∵∠PQG=90°,
∴∠PQK+∠GQN=90°,
∴∠QPK=∠GQN,
∴△PKQ∽△QNG,
∴PK:QN=KQ:GN,即PK•GN=KQ•QN.
∵PK=﹣m﹣m﹣m=﹣m﹣2m,KQ=2m2,GN=﹣m﹣m,
∴(﹣m﹣2m)(﹣m﹣m)=2m2•QN
解得QN=.
∴G(0,﹣).
2.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.
(1)请直接写出点A,B,C的坐标;
(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.
(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.
【解答】解:(1)当x=0时,y=﹣6,
∴C(0,﹣6),
当y=0时,x2﹣2x﹣6=0,
∴x1=6,x2=﹣2,
∴A(﹣2,0),B(6,0);
(2)方法一:如图1,
连接OP,
设点P(m,﹣2m﹣6),
∴S△POC=xP==3m,
S△BOP=|yP|=+2m+6),
∵S△BOC==18,
∴S△PBC=S四边形PBOC﹣S△BOC
=(S△POC+S△POB)﹣S△BOC
=3m+3(﹣+2m+6)﹣18
=﹣(m﹣3)2+,
∴当m=3时,S△PBC最大=;
方法二:如图2,
作PQ⊥AB于Q,交BC于点D,
∵B(6,0),C(0,﹣6),
∴直线BC的解析式为:y=x﹣6,
∴D(m,m﹣6),
∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,
∴S△PBC===﹣(m﹣3)2+,
∴当m=3时,S△PBC最大=;
(3)如图3,
当▱ACFE时,AE∥CF,
∵抛物线对称轴为直线:x==2,
∴F1点的坐标:(4,﹣6),
如图4,
当▱ACEF时,
作FG⊥AE于G,
∴FG=OC=6,
当y=6时,x2﹣2x﹣6=6,
∴x1=2+2,x2=2﹣2,
∴F2(2+2,6),F3(2﹣2,6),
综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).
3.(2022•湘潭)已知抛物线y=x2+bx+c.
(1)如图①,若抛物线与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.
(Ⅰ)求该抛物线所表示的二次函数表达式;
(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.
(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.
【解答】(1)解:(Ⅰ)由题意得,
,
∴,
∴y=x2﹣2x﹣3;
(Ⅱ)存在点P,使得点M是线段PH的三等分点,理由如下:
∵B(0,﹣3),A(3,0),
∴直线AB的解析式为:y=x﹣3,
设点P(m,m2﹣2m﹣3),M(m,m﹣3),
∴PH=﹣m2+2m+3,HM=3﹣m,
当PH=3HM时,
﹣m2+2m+3=3(3﹣m),
化简得,
m2﹣5m+6=0,
∴m1=2,m2=3,
当m=2时,y=22﹣2×2﹣3=﹣3,
∴P(2,﹣3),
当m=3时,y=32﹣2×3﹣3=0,
此时P(3,0)(舍去),
当PH=HM时,
﹣m2+2m+3=(3﹣m),
化简得,
2m2﹣7m+3=0,
∴m3=3(舍去),m2=,
当m=时,y=()2﹣2×﹣3=﹣,
∴P(,﹣),
综上所述:P(2,﹣3)或(,﹣);
(2)如图1,
∵抛物线y=x2+bx+c过点D(﹣3,0),
∴(﹣3)2﹣3b+c=0,
∴c=3b﹣9,
∴y=x2+bx+(3b﹣9),
把x=﹣3,y=0代入y=+n得,
0=+n,
∴n=4,
∴OC=4,
∵∠COD=90°,OD=3,OC=4,
∴CD=5,
∵四边形CDFE是菱形,
∴CE=CD=5,
∴E(5,4),
当﹣<0时,即b>0时,
当x=0时,y=3b﹣9,
∴G(0,3b﹣9),
∵该抛物线与线段CE没有交点,
∴3b﹣9>4,
∴b>,
当b<0时,
当x=5时,y=25+5b+3b﹣9=8b+16,
∴H(5,8b+16),
∵抛物线与CE没有交点,
∴8b+16<4,
∴b<﹣,
综上所述:b>或b<﹣.
4.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.
(1)写出图象W位于线段AB上方部分对应的函数关系式;
(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;
(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
【解答】解:(1)当x=0时,y=﹣2,
∴C(0,2),
当y=0时,x2﹣x﹣2=0,
(x﹣2)(x+1)=0,
∴x1=2,x2=﹣1,
∴A(﹣1,0),B(2,0),
设图象W的解析式为:y=a(x+1)(x﹣2),
把C(0,2)代入得:﹣2a=2,
∴a=﹣1,
∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,
∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);
(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:
①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;
②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,
﹣x+b=﹣x2+x+2,
x2﹣2x+b﹣2=0,
Δ=(﹣2)2﹣4×1×(b﹣2)=0,
∴b=3,
综上,b的值是2或3;
(3)∵OB=OC=2,∠BOC=90°,
∴△BOC是等腰直角三角形,
如图2,CN∥OB,△CNM∽△BOC,
∵PN∥y轴,
∴P(1,0);
如图3,CN∥OB,△CNM∽△BOC,
当y=2时,x2﹣x﹣2=2,
x2﹣x﹣4=0,
∴x1=,x2=,
∴P(,0);
如图4,当∠MCN=90°时,△OBC∽△CMN,
∴CN的解析式为:y=x+2,
∴x+2=x2﹣x﹣2,
∴x1=1+,x2=1﹣(舍),
∴P(1+,0),
综上,点P的坐标为(1,0)或(,0)或(1+,0).
5.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).
(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;
(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.
①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;
②若NP=2BP,令T=c,求T的最小值.
阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.
【解答】解:(1)当a=1,b=3时,y=x2+3x+c,
把x=1,y=1代入得,
1=1+3+c,
∴c=﹣3;
(2)①方法(一)由ax2+bx+c=0得,
x1=,x2=,
∴AB=x2﹣x1=,
∵抛物线的顶点坐标为:(﹣,),
∴AE=,OM=,
∵∠BAE=90°,
∴tan∠ABE==,
∴=,
∴b2﹣4ac=9;
(方法二)由ax2+bx+c=0得,
∵x1+x2=,x1x2=,
∴|x1﹣x2|===,
下面过程相同;
②∵b2﹣4ac=9,
∴x2=,
∵OP∥MN,
∴,
∴:=2,
∴b=2,
∴22﹣4ac=9,
∴c=﹣,
∴T=c=﹣=﹣=(﹣2)2﹣4,
∴当=2时,T最小=﹣4,
即a=时,T最小=﹣4.
6.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.
(1)求抛物线和直线BC的函数表达式.
(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.
【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2+2x+3,
令x=0,可得y=3,
∴C(0,3),
设直线BC的解析式为y=kx+b,则,
∴,
∴直线BC的解析式为y=﹣x+3;
(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),
∵B(3,0),C(0,3),
∴OB=OC=3,
∴∠OBC=45°,
∵PF∥AB,
∴∠PFE=∠OBC=45°,
∵PE⊥BC,
∴△PEF是等腰直角三角形,
∴PE的值最大时,△PEF的周长最大,
∵S△PBC=S△POB+S△POC﹣S△OBC
=×3×(﹣m2+2m+3)+×3×m﹣×3×3
=﹣m2+m
=﹣(m﹣)2+,
∵﹣<0,
∴m=时,△PBC的面积最大,面积的最大值为,此时PE的值最大,
∵×3×PE=,
∴PE=,
∴△PEF的周长的最大值=++=+,此时P(,);
(3)存在.
理由:如图二中,设M(1,t),G(m,﹣m2+2m+3).
当BC为平行四边形的边时,则有|1﹣m|=3,
解得m=﹣2或4,
∴G(﹣2,﹣5)或(4,﹣5),
当BC为平行四边形的对角线时,(1+m)=(0+3),
∴m=2,
∴G(2,3),
综上所述,满足条件的点G的坐标为(﹣2,﹣5)或(4,﹣5)或(2,3).
7.(2021•湘西州)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的解析式;
(2)连接BC,求直线BC的解析式;
(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;
(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
【解答】解:(1)把A(﹣1,0),B(4,0)代入y=ax2+bx+4,得到,
解得,
∴y=﹣x2+3x+4;
(2)在y=﹣x2+3x+4中,令x=0,则y=4,
∴C(0,4),
设BC的解析式为y=kx+b,
∵B(4,0),C(0,4),
∴,
∴,
∴直线BC的解析式为y=﹣x+4.
(3)如图1中,
由题意A,B关于抛物线的对称轴直线x=对称,
连接BC交直线x=于点P,连接PA,此时PA+PC的值最小,最小值为线段BC的长==4,
此时P(,).
(4)如图2中,存在.
观察图象可知,满足条件的点N的纵坐标为4或﹣4,
对于抛物线y=﹣x2+3x+4,当y=4时,x2﹣3x=0,解得x=0或3,
∴N1(3,4).
当y=﹣4时,x2﹣3x﹣8=0,解得x=,
∴N2(,﹣4),N3(,﹣4),
综上所述,满足条件的点N的坐标为(3,4)或(,﹣4)或(,﹣4).
8.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r= 4 ,s= ﹣1 ,t= 4 (将正确答案填在相应的横线上);
(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;
(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
【解答】解:(1)∵A,B关于y轴对称,
∴s=﹣1,r=4,
∴A的坐标为(1,4),
把A(1,4)代入是关于x的“T函数”中,得:t=4,
故答案为r=4,s=﹣1,t=4;
(2)当k=0时,有y=p,
此时存在关于y轴对称的点,
∴y=kx+p是“T函数”,且有无数对“T”点,
当k≠0时,不存在关于y轴对称的点,
若存在,设其中一点(x0,kx0+p),则对称点(﹣x0,﹣kx0+p),
∴kx0+p=﹣kx0+p,
∴k=0,与k≠0矛盾,
∴不存在,
∴y=kx+p不是“T函数”;
(3)∵y=ax2+bx+c过原点,
∴c=0,
∵y=ax2+bx+c是“T函数”,
∴b=0,
∴y=ax2,
联立直线l和抛物线得:
,
即:ax2﹣mx﹣n=0,
,,
又∵,
化简得:x1+x2=x1x2,
∴,即m=﹣n,
∴y=mx+n=mx﹣m,
当x=1时,y=0,
∴直线l必过定点(1,0).
9.(2020•益阳)如图,在平面直角坐标系中,点F的坐标是(4,2),点P为一个动点,过点P作x轴的垂线PH,垂足为H,点P在运动过程中始终满足PF=PH.
【提示:平面直角坐标系内点M、N的坐标分别为(x1,y1)、(x2,y2),则MN2=(x2﹣x1)2+(y2﹣y1)2】
(1)判断点P在运动过程中是否经过点C(0,5);
(2)设动点P的坐标为(x,y),求y关于x的函数表达式;填写下表,并在给定坐标系中画出该函数的图象;
x
…
0
2
4
6
8
…
y
…
5
2
1
2
5
…
(3)点C关于x轴的对称点为C',点P在直线C'F的下方时,求线段PF长度的取值范围.
【解答】解:(1)当P与C(0,5)重合,
∴PH=5,PF==5,
∴PH=PF,
∴点P运动过程中经过点C.
(2)由题意:y2=(x﹣4)2+(y﹣2)2,
整理得,y=x2﹣2x+5,
∴函数解析式为y=x2﹣2x+5,
当x=0时,y=5,
当x=2时,y=2,
当x=4时,y=1,
当x=6时,y=2,
当x=8时,y=5,
函数图象如图所示:
故答案为5,2,1,2,5.
(3)由题意C′(0,﹣5),F(4,2),
∴直线FC′的解析式为y=x﹣5,设抛物线交直线FC′于G,K.
由,解得或,
∴G(,),K(,),
观察图象可知满足条件的PF长度的取值范围为1≤PF<.
10.(2020•娄底)如图,抛物线经过点A(﹣3,0)、B(1,0)、C(0,3).
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上的动点,当﹣3<m<0时,试确定m的值,使得△PAC的面积最大;
(3)抛物线上是否存在不同于点B的点D,满足DA2﹣DC2=6,若存在,请求出点D的坐标;若不存在,请说明理由.
【解答】解:(1)由题意可以假设抛物线的解析式为y=a(x+3)(x﹣1),
把C(0,3)代入,可得a=﹣1,
∴抛物线的解析式为y=﹣x2﹣2x+3.
(2)设直线AC的解析式为y=kx+b,
将A(﹣3,0),C(0,3)代入得到,
解得,
∴直线AC的解析式为y=x+3.
当﹣3<m<0时,点P(m,n)在直线AC的上方,过点P作x轴的垂线交AC于Q.
则P(m,﹣m2﹣2m+3),Q(m,m+3),
∴PQ=﹣m2﹣2m+3﹣(m+3)
=﹣m2﹣3m
=﹣(m+)2+,
∵﹣3<m<0,
∴当m=﹣时,PQ的值最大,
此时S△PAC=•PQ•AO=PQ最大,
∴m=﹣.
(3)由A(﹣3,0),B(1,0),C(0,3),可得AB=4,OB=1,OC=3,
∵BC2=10,∠CAO=45°,
∴BA2﹣BC2=6,
连接BC,过点B作AC的垂线交抛物线于D,交AC于H,连接AD,DC,
则∠AHB=90°,∠DBA=∠CAO=45°,
∴DA2﹣DC2=HA2﹣HC2=AB2﹣BC2=6,
∵∠CAO=∠DBA,
∴点H在AB的垂直平分线上,
即点H在抛物线的对称轴x=﹣1上,
∴点D与点C关于抛物线的对称轴x=﹣1对称,
∵C(0,3),
∴点D的坐标为(﹣2,3).
11.(2020•郴州)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.
(1)求抛物线和直线BC的表达式;
(2)点P是抛物线上的一个动点.
①如图1,若点P在第一象限内,连接PA,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;
②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.
【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3得:,
解得
∴抛物线的表达式为y=﹣x2+2x+3,
∴点C坐标为(0,3),
把B(3,0),C(0,3)代入y=kx+n得:,
解得
∴直线BC的表达式为y=﹣x+3.
(2)①∵PA交直线BC于点D,
∴设点D的坐标为(m,﹣m+3),
设直线AD的表达式为y=k1x+b1,
∴,
解得,
∴直线AD的表达式,y=x+,
∴x+=﹣x2+2x+3,
整理得,(x﹣)(x+1)=0
解得x=或﹣1(不合题意,舍去),
∴点D的横坐标为m,点P的横坐标为,
分别过点D、P作x轴的垂线,垂足分别为M、N,如图1中:
∴DM∥PN,OM=m,ON=,OA=1,
∴=====,
设=t,则t=
整理得,(t+1)m2+(2t﹣3)m+t=0,
∵△≥0,
∴(2t﹣3)2﹣4t(t+1)≥0,
解得t≤
∴有最大值,最大值为.
②存在,理由如下:过点F作FG⊥OB于G,如图2中,
∵y=﹣x2+2x+3的对称轴为x=1,
∴OE=1,
∵B(3,0),C(0,3)
∴OC=OB=3,
又∵∠COB=90°,
∴△OCB是等腰直角三角形,
∵∠EFB=90°,BE=OB﹣OE=2,
∴△EFB是等腰直角三角形,
∴FG=GB=EG=1,
∴点F的坐标为(2,1),
当EF为边时,
∵四边形EFPQ为平行四边形,
∴QE=PF,QE∥PF∥y轴,
∴点P的横坐标与点F的横坐标同为2,
当x=2时,y=﹣22+2×2+3=3,
∴点P的坐标为(2,3),
∴QE=PF=3﹣1=2,
点Q的坐标为(1,2),
根据对称性当P(0,3)时,Q(1,4)时,四边形EFQP也是平行四边形.
当EF为对角线时,如图3中,
∵四边形PEQF为平行四边形,
∴QE=PF,QE∥PF∥y轴,
同理求得:点P的坐标为(2,3),
∴QE=PF=3﹣1=2,
点Q的坐标为(1,﹣2);
综上,点P的坐标为(2,3)时,点Q的坐标为(1,2)或(1,﹣2),P(0,3)时,Q(1,4).
12.(2020•长沙)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.
(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.
①y=2x( √ );
②y=(m≠0)( √ );
③y=3x﹣1( × ).
(2)若点A(1,m)与点B(n,﹣4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.
(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b﹣a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.
【解答】解:(1)①y=2x是“H函数”.②y=(m≠0)是“H函数”.③y=3x﹣1不是“H函数”.
故答案为:√,√,×.
(2)∵A,B是“H点”,
∴A,B关于原点对称,
∴m=4,n=﹣1,
∴A(1,4),B(﹣1,﹣4),
代入y=ax2+bx+c(a≠0)
得,
∴,
∵该函数的对称轴始终位于直线x=2的右侧,
∴﹣>2,
∴﹣>2,
∴﹣1<a<0,
∵a+c=0,
∴0<c<1,
综上所述,﹣1<a<0,b=4,0<c<1.
(3)∵y=ax2+2bx+3c是“H函数”,
∴设H(p,q)和(﹣p,﹣q),
代入得到,
解得ap2+3c=0,2bp=q,
∵p2>0,
∴a,c异号,
∴ac<0,
∵a+b+c=0,
∴b=﹣a﹣c,
∵(2c+b﹣a)(2c+b+3a)<0,
∴(2c﹣a﹣c﹣a)(2c﹣a﹣c+3a)<0,
∴(c﹣2a)(c+2a)<0,
∴c2<4a2,
∴<4,
∴﹣2<<2,
设t=,则﹣2<t<0,
设函数与x轴交于(x1,0),(x2,0),
∴x1,x2是方程ax2+2bx+3c=0的两根,
∴|x1﹣x2|=
=
=
=
=2
=2,
∵﹣2<t<0,
∴2<|x1﹣x2|<2.
13.(2020•邵阳)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;
(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.
【解答】解:(1)将C(8,0),B(0,6)代入,得,
解得,
∴抛物线的解析式为:;
(2)如答图1,作DE⊥x轴于点E,
∵C(8,0),B(0,6),
∴OC=8,OB=6.
∴BC=10.
∵∠BOC=∠BCD=∠DEC,
∴△BOC∽△CED.
∴.
∴CE=3,DE=4.
∴OE=OC+CE=11.
∴D(11,4).
(3)若点M在DA上运动时,DM=5t,ON=4t,
当△BON∽△CDM,则,即不成立,舍去;
当△BON∽△MDC,则,即,解得:;
若点M在BC上运动时,CM=25﹣5t.
当△BON∽△MCD,则,即,
∴.
当3<t≤4时,ON=16﹣4t.
∴,
解得t1=(舍去),t2=.
当4<t≤5时,ON=4t﹣16
∴,无解;
当△BON∽△DCM,则,即,
∴ON=30﹣6t;
当3<t≤4时,ON=16﹣4t,
∴30﹣6t=16﹣4t,
解得t=7(舍去);
当4<t≤5时,ON=4t﹣16,
∴30﹣6t=4t﹣16,
解得.
综上所示:当时,△BON∽△MDC;t=时,△BON∽△MCD;时,△BON∽△DCM;
(4)如答图2,作点D关于x轴的对称点F,连接QF交x轴于点N,
∵点D(11,4),
∴点F(11,﹣4).
由得对称轴为x=5,
∴点Q(5,4).
∴,.
∴.
故A'Q+QN+DN的最小值为.
14.(2020•岳阳)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x﹣)2+与x轴交于点A(﹣,0)和点B,与y轴交于点C.
(1)求抛物线F1的表达式;
(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.
①求点D的坐标;
②判断△BCD的形状,并说明理由;
(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)把点A(﹣,0)代入抛物线F1:y=a(x﹣)2+中得:
0=a(﹣﹣)2+,
解得:a=﹣,
∴抛物线F1:y=﹣(x﹣)2+;
(2)①由平移得:抛物线F2:y=﹣(x﹣+1)2+﹣3,
∴y=﹣(x+)2+,
∴﹣(x+)2+=﹣(x﹣)2+,
﹣x=,
解得:x=﹣1,
∴D(﹣1,1);
②当x=0时,y=﹣=4,
∴C(0,4),
当y=0时,﹣(x﹣)2+=0,
解得:x=﹣或2,
∴B(2,0),
∵D(﹣1,1),
∴BD2=(2+1)2+(1﹣0)2=10,
CD2=(0+1)2+(4﹣1)2=10,
BC2=22+42=20,
∴BD2+CD2=BC2且BD=CD,
∴△BDC是等腰直角三角形;
(3)存在,
设P(m,﹣),
∵B(2,0),D(﹣1,1),
∴BD2=(2+1)2+12=10,,,
分三种情况:
①当∠DBP=90°时,BD2+PB2=PD2,
即10+(m﹣2)2+[﹣]2=(m+1)2+[﹣(m+)2+﹣1]2,
解得:m=﹣4或1,
当m=﹣4时,BD=,PB==6,即△BDP不是等腰直角三角形,不符合题意,
当m=1时,BD=,PB==,
∴BD=PB,即△BDP是等腰直角三角形,符合题意,
∴P(1,﹣3);
②当∠BDP=90°时,BD2+PD2=PB2,
即10+(m+1)2+[﹣(m+)2+﹣1]2=(m﹣2)2+[﹣]2,
解得:m=﹣1(舍)或﹣2,
当m=﹣2时,BD=,PD==,
∴BD=PD,即此时△BDP为等腰直角三角形,
∴P(﹣2,﹣2);
③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,
当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;
综上,点P的坐标是(1,﹣3)或(﹣2,﹣2).
15.(2020•怀化)如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.
(1)求点C及顶点M的坐标.
(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.
(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.
(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)令y=x2﹣2x﹣3中x=0,此时y=﹣3,
故C点坐标为(0,﹣3),
又∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的顶点M的坐标为(1,﹣4);
(2)过N点作x轴的垂线交直线BC于Q点,连接BN,CN,如图1所示:
令y=x2﹣2x﹣3=0,
解得:x=3或x=﹣1,
∴B(3,0),A(﹣1,0),
设直线BC的解析式为:y=ax+b,
将C(0,﹣3),B(3,0)代入直线BC的解析式得:,
解得:,
∴直线BC的解析式为:y=x﹣3,
设N点坐标为(n,n2﹣2n﹣3),故Q点坐标为(n,n﹣3),其中0<n<3,
则==,(其中xQ,xC,xB分别表示Q,C,B三点的横坐标),且QN=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n,xB﹣xC=3,
故,其中0<n<3,
当时,S△BCN有最大值为,
此时点N的坐标为(),
(3)存在,理由如下:
设D点坐标为(1,t),G点坐标为(m,m2﹣2m﹣3),且B(3,0),C(0,﹣3)
分情况讨论:
①当DG为对角线时,则另一对角线是BC,由中点坐标公式可知:
线段DG的中点坐标为,即,
线段BC的中点坐标为,即,
此时DG的中点与BC的中点为同一个点,
∴,解得,
经检验,此时四边形DCGB为平行四边形,此时G坐标为(2,﹣3);
②当DB为对角线时,则另一对角线是GC,由中点坐标公式可知:
线段DB的中点坐标为,即,
线段GC的中点坐标为,即,
此时DB的中点与GC的中点为同一个点,
∴,解得,
经检验,此时四边形DCBG为平行四边形,此时G坐标为(4,5);
③当DC为对角线时,则另一对角线是GB,由中点坐标公式可知:
线段DC的中点坐标为,即,
线段GB的中点坐标为,即,
此时DC的中点与GB的中点为同一个点,
∴,解得,
经检验,此时四边形DGCB为平行四边形,此时G坐标为(﹣2,5);
综上所述,G点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5);
(4)存在,理由如下:
连接AC,OP,如图2所示:
设MC的解析式为:y=kx+m,
将C(0,﹣3),M(1,﹣4)代入MC的解析式得:,
解得:
∴MC的解析式为:y=﹣x﹣3,令y=0,则x=﹣3,
∴E点坐标为(﹣3,0),
∴OE=OB=3,且OC⊥BE,
∴CE=CB,
∴∠CBE=∠E,
设P(x,﹣x﹣3),
又∵P点在线段EC上,
∴﹣3<x<0,
则,,
由题意知:△PEO相似于△ABC,
分情况讨论:
①△PEO∽△CBA,
∴,
∴,
解得,满足﹣3<x<0,此时P的坐标为;
②△PEO∽△ABC,
∴,
∴,
解得x=﹣1,满足﹣3<x<0,此时P的坐标为(﹣1,﹣2).
综上所述,存在以点P、E、O为顶点的三角形与△ABC相似,P点的坐标为或(﹣1,﹣2).
16.(2020•张家界)如图,抛物线y=ax2﹣6x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+5经过点B,C.
(1)求抛物线的解析式;
(2)抛物线的对称轴l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由;
(3)在直线BC上是否存在点M,使AM与直线BC的夹角等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.
【解答】解:(1)∵直线y=﹣x+5经过点B,C,
∴当x=0时,可得y=5,即C的坐标为(0,5).
当y=0时,可得x=5,即B的坐标为(5,0).
∴.
解得.
∴该抛物线的解析式为y=x2﹣6x+5;
(2)△APC为直角三角形,理由如下:
∵解方程x2﹣6x+5=0,则x1=1,x2=5.
∴A(1,0),B(5,0).
∵抛物线y=x2﹣6x+5的对称轴直线l为x=3,
∴△APB为等腰三角形.
∵C的坐标为(0,5),B的坐标为(5,0),
∴OB=CO=5,即∠ABP=45°.
∵PA=PB,
∴∠PAB=∠ABP=45°,
∴∠APB=180°﹣45°﹣45°=90°.
∴∠APC=180°﹣90°=90°.
∴△APC为直角三角形;
(3)如图:作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,AC于E,
∵M1A=M1C,
∴∠ACM1=∠CAM1.
∴∠AM1B=2∠ACB.
∵△ANB为等腰直角三角形.
∴AH=BH=NH=2.
∴N(3,2).
设AC的函数解析式为y=kx+b(k≠0).
∵C(0,5),A(1,0),
∴.
解得b=5,k=﹣5.
∴AC的函数解析式为y=﹣5x+5,
设EM1的函数解析式为y=x+n,
∵点E的坐标为().
∴=×+n,
解得:n=.
∴EM1的函数解析式为y=x+.
∵.
解得.
∴M1的坐标为();
在直线BC上作点M1关于N点的对称点M2,
设M2(a,﹣a+5),
则有:3=,解得a=.
∴﹣a+5=.
∴M2的坐标为(,).
综上,存在使AM与直线BC的夹角等于∠ACB的2倍的点,且坐标为M1(),M2(,).
17.(2020•常德)如图,已知抛物线y=ax2过点A(﹣3,).
(1)求抛物线的解析式;
(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;
(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.
【解答】解:(1)把点A(﹣3,)代入y=ax2,
得到=9a,
∴a=,
∴抛物线的解析式为y=x2.
(2)设直线l的解析式为y=kx+b,则有,
解得,
∴直线l的解析式为y=﹣x+,
令x=0,得到y=,
∴C(0,),
由,解得或,
∴B(1,),
如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,
∴===,===,
∴=,
即MC2=MA•MB.
(3)如图2中,设P(t,t2)
∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,
∴PD∥OC,PD=OC,
∴D(t,﹣t+),
∴|t2﹣(﹣t+)|=,
整理得:t2+2t﹣6=0或t2+2t=0,
解得t=﹣1﹣或﹣1+或﹣2或0(舍弃),
∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).
第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共25页。试卷主要包含了,与y轴交于点C,,与x轴的正半轴交于点C,,顶点为D,,则该抛物线的解析式可以表示为等内容,欢迎下载使用。
第22章+二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第22章+二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共49页。试卷主要包含了,他们称,,与y轴交于点C等内容,欢迎下载使用。
第5章二次函数解答题-压轴题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏): 这是一份第5章二次函数解答题-压轴题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共36页。试卷主要包含了,与y轴交于点C,顶点为D,,与y轴交于点C,两点,,交y轴于点C等内容,欢迎下载使用。