河南省鹿邑县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开鹿邑县2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共10个小题,每小题3分,共 30分。下列各题,每小题只有一个选项符合题意。)
1. 的值是( )
A B. C. 1 D. 1
2. 冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米米),125纳米用科学记数法表示等于( )
A. 米 B. 米 C. 米 D. 米
3. 下列运算正确的是( )
A. a2•a3=a6 B. a5÷a3=a2
C. a2+a3=a5 D. (a2)3=a5
4. 已知分式的值是零,那么的值是
A. ﹣1 B. 0 C. 1 D. ±1
5. 如与的乘积中不含的一次项,则的值为( )
A. B. 3 C. 0 D. 1
6. 如图,∠1=∠2,要说明△ABD≌△ACD,需从下列条件中选一个,错误的选法是( )
A. ∠ADB=∠ADC B. ∠B=∠C C. DB=DC D. AB=AC
7. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84° B. 60° C. 48° D. 43°
8. 下列说法中正确的是( )
A. 已知,,是三角形的三边长,则
B. 在直角三角形中,两边的平方和等于第三边的平方
C. 在中,若,则
D. 在中,若,则
9. 下列多项式不能用公式法进行因式分解的是( )
A. 1 a2 B.
C. x2 2xy y2 D. 4x2 4x 1
10. 如图,在中,,,点,分别是,上的动点,将沿直线翻折,点的对点恰好落在边上,若是等腰三角形,那么的度数为( )
A. 或 B. 或
C. ,或 D. ,或
二.填空题(共5题,总计 15分)
11. 运用完全平方公式计算:(﹣3x+2)2=_________.
12. 将下列多项式分解因式,结果中不含因式的是_________(填上你认为正确的序号).①;②;③;④.
13. 周长为24,斜边长为10的直角三角形面积为________.
14. 有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是_____.
15. 如图,在△ABC中,∠BAC和∠ABC的平分线AE、BF相交于点O,AE交BC于点E,BF交AC于点F,过点O作OD⊥BC于点D,则下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是 _____.
三.解答题(共7题,总计75分)
16. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
17. 先化简,再求值:,其中-2x2,请从x的范围中选入一个你喜欢的值代入,求此分式的值.
18. 如图,在下方单位长度为1的方格纸中画有一个△ABC.
(1)画出△ABC关于y轴对称△A′B′C′;
(2)求△ABC的面积.
19. 如图,已知△ABC.
(1)用直尺和圆规按下列要求作图:
①作△ABC的角平分线AD;
②作∠CBE=∠ADC,BE交CA的延长线于点E;
③作AF⊥BE,垂足为F.
(2)直接判断图中EF与BF的数量关系.
20. 计算:
(1)已知,求的值;
(2)已知实数m、n满足m2﹣10mn+26n2+4n+4=0,求mn的值.
21. 某车间有甲乙两个小组,甲组的工作效率比乙组的工作效率高20%,甲组加工2700个零件所用的时间比乙组加工2000个零件所用的时间多半小时,求甲乙两组每小时各加工零件多少个?
22. 如图1,已知点P(2, 2),点A在x轴正半轴上运动,点B在y轴负半轴上运动,且PAPB.
(1)求证:PA⊥PB;
(2)若点A(8, 0),请直接写出B的坐标并求出OAOB的值;
(3)如图2,若点B在y轴正半轴上运动,其他条件不变,请直接写出OAOB的值.
鹿邑县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:
故选C
2.【答案】:A
【解析】:解:125纳米=125×10-9米=米,
故选:A.
2.【答案】:B
【解析】:A、a2•a3=a5,故本选项错误,不符合题意;
B、a5÷a3=a2,故本选项正确,符合题意;
C、a2和a3不是同类项,无法合并,故本选项错误,不符合题意;
D、(a2)3=a6,故本选项错误,不符合题意;
故选:B
4.【答案】:C
【解析】:解:由题意可知:且,
,
故选:C.
5.【答案】:A
【解析】:,
又与的乘积中不含的一次项,
,
解得.
故选:A.
6.【答案】:C
【解析】:解:由题意可知∠1=∠2,AD=AD,
对于条件∠ADB=∠ADC,可以利用ASA证明△ABD≌△ACD,故选项A不符合题意;
对于条件∠B=∠C,可以利用AAS证明△ABD≌△ACD,故选项B不符合题意;
对于条件DB=DC,不可以利用SSA证明△ABD≌△ACD,故选项C符合题意;
对于条件AB=AC,可以利用SAS证明△ABD≌△ACD,故选项D不符合题意;
故选C.
7.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
8.【答案】:C
【解析】:A、已知a、b、c是三角形的三边,无法确定a2+b2=c2,故选项错误;
B、在直角三角形中两直角边的平方和等于斜边的平方,故选项错误;
C、在Rt△ABC中,∠C=90°,所以AC2+BC2=AB2,故选项正确;
D、在Rt△ABC中,∠B=90°,所以AB2+BC2=AC2,故选项错误.
故选C.
9.【答案】:B
【解析】:解:, 故A不符合题意;
不能用公式法分解因式,故B符合题意;
x2 2xy y2, 故C不符合题意;
, 故D不符合题意;
故选:B
10.【答案】:D
【解析】:,,
,
分三种情况讨论:
①当时,如图:
,
;
②当时,如图:
,
;
③当时,如图:
,
;
综上所述,为或或,
故选:D.
二. 填空题
11.【答案】: 9x2﹣12x+4
【解析】:原式=9x2﹣12x+4.
故答案为:9x2﹣12x+4.
12.【答案】:④
【解析】:解:①,含因式;
②,含因式;
③,含因式;
④,不含因式;
故答案为:④.
13.【答案】:24
【解析】:设直角三角形两直角边长为a,b,
∵该直角三角形的周长为24,其斜边长为10,
∴24﹣(a+b)=10,
即a+b=14,
由勾股定理得:a2+b2=102=100,
∵(a+b)2=142,
∴a2+b2+2ab=196,
即100+2ab=196,
∴ab=48,
∴直角三角形的面积=ab=24,
故答案为:24.
14.【答案】: 20°或35°或27.5°
【解析】:由题意知△ABD与△DBC均为等腰三角形,
对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,
∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,
∠C=(180°﹣110°)=35°,
②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,
∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,
∠C=(180°﹣125°)=27.5°,
③AD=BD,此时,∠ADB=180°﹣2×70°=40°,
∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,
∠C=(180°﹣140°)=20°,
综上所述,∠C度数可以为20°或35°或27.5°.
故答案为:20°或35°或27.5°
【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.
15.【答案】: ①②
【解析】:解:∵∠BAC和∠ABC的平分线AE、BF相交于点O,
∴∠OBA=,,
∴∠AOB=180°﹣∠OBA﹣∠OAB
=
=
=
=,故①正确;
∵∠C=60°,
∴∠BAC+∠ABC=120°,
∵AE、BF分别平分∠BAC与∠ABC,
∴∠OAB+∠OBA==60°,
∴∠AOB=120°,
∴∠AOF=60°,
∴∠BOE=60°,
如图,在AB上取一点H,使BH=BE,
∵BF是∠ABC的角平分线,
∴∠HBO=∠EBO,
在△HBO与△EBO中,
,
∴△HBO≌△EBO(SAS),
∴∠BOH=∠BOE=60°,
∴∠AOH=180°﹣60°﹣60°=60°,
∴∠AOH=∠AOF,
在△HAO与△FAO中,
,
∴△HAO≌△FAO(ASA),
∴AH=AF,
∴AB=BH+AH=BE+AF,故②正确;
作OH⊥AC于H,OM⊥AB于M,
∵∠BAC与∠ABC的平分线相交于点O,
∴点O在∠C的平分线上,
∴OH=OM=OD=a,
∵AB+AC+BC=2b,
∴
=
=ab,故③错误,
故答案为:①②.
三.解答题
16【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
【解析】:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
17【答案】:
, 0
【解析】:
=
=-
当x=1时,
原式=-.
18【答案】:
(1)见解析;(2)
【解析】:
(1)解:关于y轴对称的如下图所示 :
(2)
.
19【答案】:
(1)①作图见解析;②作图见解析;③作图见解析
(2)
【解析】:
【小问1详解】
①解:如图1,射线AD就是∠BAC的角平分线;
②解:作∠EBC=∠ADC,点E就是所求作的点,如图1所示;
③解:作线段的垂直平分线,如图1所示;
【小问2详解】
解:.
由(1)可知
∵∠CBE=∠ADC
∴
∴,
∴
∴
∴是等腰三角形
∵
∴.
【点睛】本题考查了作角平分线、作一个角等于已知角、作线段的垂直平分线、等腰三角形的判定与性质.解题的关键在于对知识的灵活运用.
20【答案】:
(1)±1; (2)
【解析】:
【小问1详解】
解:∵,
∴,
∴,
即,
解得,
∴的值为;
【小问2详解】
解:∵m2﹣10mn+26n2+4n+4=0,
∴m2﹣10mn+25n2+n2+4n+4=0,
∴(m﹣5n)2+(n+2)2=0,
∴m﹣5n=0,n+2=0,
∴n=﹣2,m=﹣10,
∴mn=,
∴mn的值为.
【点睛】本题主要考查利用完全平方和、完全平方差公式求代数式的值,需要熟练掌握及其变形.
21【答案】:
甲每小时加工600个零件,乙每小时加工500个零件
【解析】:
解:设乙组每小时加工的零件数为x个,则甲组每小时加工零件数为
(1+20%)x个.根据题意得:
=+,
解得:x=500,
经检验,x=500是原方程的解,
(1+20%)x=600,
答:甲每小时加工600个零件,乙每小时加工500个零件.
22【答案】:
(1)见解析
(2)(0, 4) ,4
(3)4
【解析】:
【小问1详解】
证明:如图,过点P作PE⊥x轴于点E,PF⊥y轴于点F,
∵点P(2, 2),
∴PE=PF=2.
在Rt△PEA和Rt△PFB中,
∵PE=PF,PA=PB,
∴Rt△PEA ≌Rt△PFB(HL).
∴∠PBF=∠PAE.
∴∠BPA=∠BOA=90°,
∴PA⊥PB;
【小问2详解】
解:由(1)得:Rt△APE≌Rt△BPF,
∴BF=AE,
∵A(8,0),
∴OA=8,
∴AE=OA-OE=8-2=6,
∴BF=AE=6,
∴OB=BF-OF=6-2=4,
∴点B的坐标为(0,-4);
∵AE=OA-OE=OA-2,BF=OF+OB=2+OB,
∴OA-2=2+OB,
∴OA-OB=4;
【小问3详解】
解:过点P作PM⊥x轴于点M,PN⊥y轴于点N,
∵P(2,2),
∴OM=ON=2,PM=PN=2
∵PA=PB,
∴Rt△APM≌Rt△BPN,
∴AM=BN,
∵AM=OA-OM=OA-2,BN=ON-OB=2-OB,
∴OA-2=2-OB,
∴OA+OB=4.
河南省正阳县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解): 这是一份河南省正阳县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共17页。试卷主要包含了选择题等内容,欢迎下载使用。
河南省太康县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解): 这是一份河南省太康县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
河南省沈丘县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解): 这是一份河南省沈丘县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共17页。试卷主要包含了选择题等内容,欢迎下载使用。