河南省开封市杞县2022-2023学年八年级上学期期末模拟测试数学试卷(答案不全)
展开1. 下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )
A. B.
C. D.
2. 人体中枢神经系统中含有1千亿个神经元.某个神经元的直径约为52微米,52微米为5.2 × 10-5米. 将5.2 × 10-5用小数表示为( )
A. 0.00052B. 0.000052C. 0.0052D. 0.0000052
3. 下列计算正确的是( )
A. x•x3=x4B. x4+x4=x8C. (x2)3=x5D. x﹣1=﹣x
4. 把分式的x,y均扩大为原来的10倍后,则分式的值
A. 为原分式值的B. 为原分式值的
C. 为原分式值的10倍D. 不变
5. 若(x+m)(x﹣8)中不含x的一次项,则m的值为( )
A. 8B. ﹣8C. 0D. 8或﹣8
6. 如图,下列条件中,不能证明△ABC≌△DCB的是( )
A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCB
C. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB
7. 如图将直尺与含30°角的三角尺摆放在一起,若,则的度数是( )
A. B. C. D.
8. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
① ②
③ ④
A. 1个B. 2个C. 3个D. 4个
9. 已知甲、乙、丙均为x的一次多项式,且其一次项系数皆为正整数,若甲与乙相乘得,乙与丙相乘得,则甲、丙之积与乙的差是( )
A. B.
C. D.
10. 如图,若x为正整数,则表示分式的值落在( )
A. 线①处B. 线②处C. 线③处D. 线④处
二.填空题(共5题,总计 15分)
11. 计算: =_________.
12. 如果一个多边形的每个外角都是,那么这个多边形的边数为_________.
13. 若,则可表示为________(用含a、b的代数式表示).
14. 将等边三角形、正方形、正五边形按如图所示的位置摆放,如果,,那么的度数等于________.
15. 在学习了负整数指数幂的知识后,小明和小军两同学做了一个数学游戏,小明出了题目:将的结果化为只含有正整数指数幂的形式,其结果为,则“*”处的数是多少?聪明的你替小军填上“*”处的数是___________.
三.解答题(共8题,总计75分)
16. 计算:
(1)(﹣a2)3÷a4+(a+2)(2a﹣3).
(2)(3a+2b﹣5)(3a﹣2b+5)
17. 先化简:,再从1,2,3中选取一个适当的数代入求值.
18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
19. 如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE相交于点O,∠BOC=119°.
(1)求∠OBC+∠OCB的度数;
(2)求∠A的度数.
20. 已知,如图,为等边三角形,,AD,BE相交于点P,于Q.
(1)求证:;
(2)求的度数;
(3)若,,求AD的长.
21. 教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.能解决一些与非负数有关的问题或求代数式最大值,最小值等.
例如:分解因式:.
原式=
例如.求代数式的最小值.
原式=,可知当时,有最小值,最小值是.
(1)分解因式:________;
(2)试说明:x、y取任何实数时,多项式的值总为正数;
(3)当m,n为何值时,多项式有最小值,并求出这个最小值.
22. 一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
23. 如图1,在长方形中,,点P从点B出发,以的速度沿向点C运动(点P运动到点C处时停止运动),设点P的运动时间为.
(1)_____________.(用含t的式子表示)
(2)当t何值时,?
(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点D运动(点Q运动到点D处时停止运动,两点中有一点停止运动后另一点也停止运动),是否存在这样的值使得与全等?若存在,请求出的值;若不存在,请说明理由.
杞县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
解析:解:A、不是轴对称图形,本选项不符合题意;
B、不是轴对称图形,本选项不符合题意;
C、不是轴对称图形,本选项不符合题意;
D、是轴对称图形,本选项符合题意.
故选:D.
2.【答案】:B
解析:解:
故选B
2.【答案】:A
解析:解:A. x•x3=x4,正确;
B. x4+x4=2x4,原式错误;
C.(x2)3=x6,原式错误;
D. x-1=,原式错误;
故选:A.
4.【答案】:A
解析:x、y均扩大为原来的10倍后,
∴
故选A.
5.【答案】:A
解析:原式,
由结果不含一次项,得到,即,
则的值为8,
故选:A.
6.【答案】:D
解析:A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;
B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;
C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;
D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.
故选D.
7.【答案】:C
解析:如图,
∵∠BEF是△AEF的外角,∠1=20,∠F=30,
∴∠BEF=∠1+∠F=50,
∵AB∥CD,
∴∠2=∠BEF=50,
故选:C.
8.【答案】:B
解析::①x3+x=x(x2+1),不符合题意;
②x2-2xy+y2=(x-y)2,符合题意;
③a2-a+1不能分解,不符合题意;
④x2-16y2=(x+4y)(x-4y),符合题意,
故选B
9.【答案】:A
解析:A
∵,
∵,
又∵甲与乙相乘得:,乙与丙相乘得:,
∴甲为,乙为,丙为,
∴甲、丙之积与乙的差是:
,
,
,
故选:A
10.【答案】:B
解析:原式,
∵为正整数,
∴,
∴原式可化为:,
∵分子比分母小1,且为正整数,
∴是真分数,且最小值是,
即,,
∴表示这个数的点落在线②处,
故选:B.
二. 填空题
11.【答案】: 3
解析:原式=1+2=3
故答案为:3.
12.【答案】:12
解析:解:∵多边形的外角和是360°,每个外角都是,
∴360÷30=12,
∴这个多边形有12条边,
故答案为:12.
13.【答案】:.
解析:∵,
∴====.
故答案为:.
14.【答案】:
解析:等边三角形的每个内角的度数为,
正方形的每个内角的度数为,
正五边形的每个内角的度数为,
如图,的外角和等于,
,
即,
,
又,
,
解得,
故答案为:.
15.【答案】:
解析:解:
由题意得,
故答案为:.
三.解答题
16【答案】:
(1)a2+a﹣6;
(2)9a2﹣4b2+20b﹣25
解析:
【小问1解析】
解:(﹣a2)3÷a4+(a+2)(2a﹣3)
=﹣a6÷a4+2a2﹣3a+4a﹣6
=﹣a2+2a2﹣3a+4a﹣6
=a2+a﹣6;
【小问2解析】
解:(3a+2b﹣5)(3a﹣2b+5)
=[3a+(2b﹣5)][3a﹣(2b﹣5)]
=(3a)2﹣(2b﹣5)2
=9a2﹣(4b2﹣20b+25)
=9a2﹣4b2+20b﹣25.
17【答案】:
,-5.
解析:
原式
,
当,2时分式无意义,
将,代入原式得:
则原式.
18【答案】:
(1)见解析;(2)A1(-1,2)、B1(-3,1)、C1(2,-1);(3)
解析:
解:(1)如图所示,△A1B1C1即为所求.
(2)由图知,A1(-1,2)、B1(-3,1)、C1(2,-1);
(3)△A1B1C1的面积=
19【答案】:
(1)61° (2)58°
解析:
【小问1解析】
解:∵∠BOC=119°,
∴在∠BCO中,∠OBC+∠OCB=180°﹣∠BOC=61°;
【小问2解析】
解:∵BD平分∠ABC,CE平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=122°,
∴△ABC中,∠A=180°﹣122°=58°.
20【答案】
21【答案】:
(1)
(2)见解析
(3)当时,多项式有最小值
解析:
【小问1解析】
解:
;
故答案为:
【小问2解析】
解:
,
∵,
∴,
∴原式的值总为正数;
【小问3解析】
解:
当,即时,
原式取最小值-3.
∴当时,多项式有最小值.
22【答案】:
(1)甲,乙两公司单独完成此项工程,各需20天,30天;
(2)让一个公司单独完成这项工程,甲公司的施工费较少.
解析:
解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.
根据题意,得,
解得x=20.
经检验,x=20是方程的解且符合题意.
1.5 x=30.
∴甲,乙两公司单独完成此项工程,各需20天,30天.
(2)设乙公司每天的施工费为y元,则甲公司每天的施工费为(y+1500)元,
依题意得:12y+12(y+1500)=102000,
解得:y=3500.
∴甲公司单独完成这项工程所需施工费为(3500+1500)×20=100000(元),
乙公司单独完成这项工程所需施工费为3500×30=105000(元).
∵100000<105000,
∴若让一个公司单独完成这项工程,甲公司的施工费较少.
23【答案】
河南省安阳市文峰区2022-2023学年七年级上学期期末模拟测试数学试卷(答案不全): 这是一份河南省安阳市文峰区2022-2023学年七年级上学期期末模拟测试数学试卷(答案不全),共11页。试卷主要包含了选择题等内容,欢迎下载使用。
河南省开封市杞县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河南省开封市杞县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共13页。试卷主要包含了选择题等内容,欢迎下载使用。
河南省安阳市内黄县2022-2023学年七年级上学期期末模拟测试数学试卷(答案不全): 这是一份河南省安阳市内黄县2022-2023学年七年级上学期期末模拟测试数学试卷(答案不全),共11页。试卷主要包含了选择题等内容,欢迎下载使用。