浙教版七年级上册5.1 一元一次方程复习ppt课件
展开
这是一份浙教版七年级上册5.1 一元一次方程复习ppt课件PPT课件主要包含了知识框架,复习巩固,典例分析,巩固提高等内容,欢迎下载使用。
1.方程的解:使方程左右两边的值相等的未知数的值,就是方程的解。2.等式的基本性质:性质1:等式的两边都加上(或减去)同一个数或式子,等式仍然成立。如果a=b,那么a+c=b+c,a-c=b-c性质2:等式两边都乘或除以同一个数或式子(除数不为0),等式仍然成立。如果a=b,那么ac=bc,a/c=b/c(c≠0)
3.方程的变形方法: 方程的两边都加上或(都减去)同一个数或同一个整式,方程的解不变。 方程两边都乘以(或都除以)同一个不为零的数,方程的解不变。 方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项。4.一元一次方程的概念:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1的方程叫做一元一次方程。5.解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1。
6.等积类应用题的基本关系式是:变形前的体积=变形后的体积7.利息的计算方法:利息=本金×利率×期数本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)
8.利润问题中的等量关系式:商品利润=商品售价-商品进价 商品售价=商品标价×折扣数商品利润/商品进价×100%=商品利润率商品售价=商品进价×(1+利润率)9.行程问题中基本数量关系是:路程=速度×时间,变形可得到:速度=路程÷时间,时间=路程÷速度常见题型是相遇问题、追及问题,不管哪个题型都有以下的相等关系:相遇:相遇时间×速度和=路程和, 追及:追及时间×速度差=被追及距离
10.工程问题中的等量关系式:工作量=工作效率×工作时间。11.运用方程解实际问题的一般过程:(1)审题:分析题意,找出题中的各个量及其关系;(2)设元:选择一个适当的未知数用字母表示;(3)列方程:根据相等关系列出方程;(4)解方程:求出未知数的值;(5)检验:检验求出的值是否正确或符合实际情形;(6)答:写出答案。
例1:方程y-10=-4y的解是( )A.y=1B.y=2C.y=3D.y=4
例2:给出下面四个方程及变形:(1)4x+10=0,变形为2x+5=0;(2)x+7=5-3x,变形为4x=12;(3)2/3x=5,变形为2x=15;(4)16x=-8,变形为x=-2;其中方程变形正确的编号组为( )A.(1)(2)B.(1)(2)(3)(4) C.(1)(3)D.(1)(2)(3)
例3:解方程5x-7+3x=6x+1解:5x+3x-6x=1+72x=8x=4
例4:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分,已知某人有5道题未做,得了103分,则这个人选错了多少题?
分析:等量关系是:选对所得的分-选错所扣的分=最后的得分解:设这人选错了x道题,则选对了(50-5-x)道3(50-5-x)-x=103解这个方程得 x=8答:这个人选错了8道题。
例5:某校学生进行军训,以每小时5千米的速度去执行任务,出发4小时12分钟后,学校军训指挥部派通讯员骑摩托车追赶学生队伍传达新任务,用了36分钟赶上了队伍,求摩托车的速度。
分析:等量关系是:学生队伍的行进路程=摩托车行驶的路程。解:设摩托车的速度为每小时x千米。根据题意,列方程得:
解这个方程得x=40答:摩托车的速度为每小时40千米。
1.若关于x的方程3(x-1)+a=b(x+1)(a,b为常数)是一元一次方程,则( )A.a,b为任意有理数B.a≠0C.b≠0D.b≠3
2.方程|2x-1|=4x+5的解是( )A.x=-3或x=-2/3B.x=3或x=2/3C.x=-2/3D.x=-3
3.解方程3/4×(4/3x-1)=3,下列变形中,较简捷的是( )A.方程两边都乘以4,得3(4/3x-1)=12B.去括号,得x-3/4=3C.两边同除以3/4,得4/3x-1=4D.整理,得(4x-3)/4=3
4.解方程(1)5(x-4)-7(7-x)-9=12-3(9-x)解:5x-20-49+7x-9=12-27+3x5x-3x+7x=12-27+20+49+99x=63x=7
(2)x-2[x-3(x-1)]=8解:x-2[x-3x+3]=8x-2x+6x-6=8x-2x+6x=8+65x=14x=2.8
5.某校组织学生春游,如果包租相同的大巴3辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问春游的总人数是多少?分析:本题若直接设总人数则较难列出方程,所以可以改设每辆大巴的座位数为x较方便。等量关系为:两种方案中的总人数相同。
解:设每辆大巴的座位数为x人,根据题意列方程得3x+14=4x-26解这个方程得x=40所以总人数为:3×40+14=134(人)答:春游的总人数是134人。
6.某工人原计划用26天生产一批零件,工作两天后,因改变了操作方法,每天比原来多生产5个零件,结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?分析:本题利用“前2天的工作量+后20天的工作量=工作总量”来列等式,而“工作量=工作效率×工作时间”。
解:设改进操作方法前每天生产零件x个,根据题意,得2x+(26-2-4)(x+5)=26x解得x=25所以,这些零件有26×25=650(个)答:原来每天生产零件25个,这批零件有650个。
7.一队学生去校外进行军事野营训练.他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长。通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去。通讯员用多少时间可以追上学生队伍?
分析:(1)细审题意:学生队伍出发18分钟后,通讯员才开始出发,并且与学生队伍同向而行.通讯员追上队伍时,通讯员所走的距离和学生队伍所走的距离相等,但是在同一时间里(从通讯员出发到追上队伍),他们所走的路程是不同的,通讯员比学生队伍多走了5×18/60千米,设通讯员用x小时可以追上学生队伍
(2)找等量关系:追上学生队伍时,通讯员走的路程=学生队伍走的路程解:设通讯员用x小时可以追上学生队伍,根据题意,得14x=5×18/60+5x解这个方程,得x=1/6(小时)=10(分钟)答:通讯员用10分钟可以追上学生队伍。
相关课件
这是一份初中5.1 一元一次方程图文ppt课件,共16页。PPT课件主要包含了情景导学,展示预学,一元一次方程,等式的性质,解一元一次方程,一元一次方程的应用,依据概念解答相关问题,一元一次方程的求解,典型题分类剖析,方程的解等内容,欢迎下载使用。
这是一份初中数学苏科版七年级上册4.2 解一元一次方程教学演示课件ppt,共17页。PPT课件主要包含了听果奶饮料多少钱,导入新课,合作探究,解去括号得,x+2+x17,讲授新课,合并同类项,系数化为1,去括号,归纳总结等内容,欢迎下载使用。
这是一份苏科版4.2 解一元一次方程教案配套ppt课件,共24页。PPT课件主要包含了情境引入,导入新课,合作探究,讲授新课,移项要点,另一边,典例精析,易错提醒,做一做,x-2x等内容,欢迎下载使用。