搜索
    上传资料 赚现金
    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题12.1 全等三角形九大基本模型 专项讲练(原卷版).docx
    • 解析
      专题12.1 全等三角形九大基本模型 专项讲练(解析版).docx
    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)01
    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)02
    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)03
    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)01
    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)02
    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)03
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)

    展开
    这是一份2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷),文件包含专题121全等三角形九大基本模型专项讲练解析版docx、专题121全等三角形九大基本模型专项讲练原卷版docx等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。

    专题12.1 全等三角形九大基本模型 专项讲练
    全等在初中数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,该份资料就全等三角形中平移型全等、轴对称(翻折)型全等、旋转型全等、三垂直型全等、一线三等角型全等、手拉手型全等、半角模型、倍长中线模型、截长补短模型等经典模型进行梳理及对应试题分析,方便掌握。

    模型一:平移模型
    【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.

    【常见模型】

    例1.(2022•襄城区期末)如图,点B、E、C、F四点在一条直线上,∠A=∠D,AB∥DE,老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AB=DE;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是   ;
    (2)请你从正确的说法中选择一种,给出你的证明.

    式1. (2021•富顺县校级月考)如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.

    模型二:轴对称模型
    【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.
    【常见模型】

    例2.(2022·河南南阳市·八年级期末)如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O,(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.



    变式2.(2022·湖南常德·八年级阶段练习)如图,AB=AD,BC=DC,点E在AC上.
    (1)求证:AC平分∠BAD;(2)求证:BE=DE.

    模型三:旋转模型
    【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.
    【常见模型】

    例3.(2022·浙江衢州·八年级期末)两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并将它们的底角顶点分别对应连接起来得到两个全等三角形,我们把这样的图形称为“手拉手”图形.如图1,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连结BD,CE,则△ABD≌△ACE.
    (1)请证明图1的结论成立;(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,求∠BOC的度数;(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.




    变式3.(2022·贵州安顺·八年级期末)如图1,在等腰Rt△ABC中,∠A=90°,点D、E分别在边AB、AC上,AD=AE,连接DC,点M、P、N分别为DE、DC、BC的中点.
    (1)观察猜想:图1中,线段PM与PN的数量关系是   ,位置关系是    ;
    (2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,求△PMN面积的最大值.
       






    模型四:一线三等角模型
    【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.

    【常见模型】

    例4.(2022•覃塘区期中)已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;
    (2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.



    变式4.(2022•香坊区八年级期末)如图,在△ABC中,点D是边BC上一点,CD=AB,点E在边AC上,且AD=DE,∠BAD=∠CDE.(1)如图1,求证:BD=CE;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠ADE相等的角(∠ADE除外).




    模型五:三垂直全等模型
    【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。
    【常见模型】

    例5.(2022·江西·八年级期末)已知:,,,.
    (1)试猜想线段与的位置关系,并证明你的结论.
    (2)若将沿方向平移至图2情形,其余条件不变,结论还成立吗?请说明理由.
    (3)若将沿方向平移至图3情形,其余条件不变,结论还成立吗?请说明理由.



    变式5. (2021·广东省龙岭初级中学初二期中)如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.(1)∠D和∠ECB相等吗?若相等,请说明理由;(2)△ADC≌△BCE吗?若全等,请说明理由;(3)能否找到与AB+AD相等的线段,并说明理由。


    模型六: 手拉手模型
    【模型分析】
    将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
    【模型图示】

    公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。
    【常见模型】
    (等腰)
    (等边)
    (等腰直角)
    例6.(2021·甘肃庆阳市·八年级期末)在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小组进行了如下操究:
    (1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是 ,此线BD和CE的数量关系是

    (2)如图2、两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由:
    (3)如图3,已知△ABC、请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数、





    变式6. (2022·新疆八年级期中)如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交于F点.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)(2)两小题的结论是否仍然成立,不要求证明.




    模型七: 半角全等模型
    【模型分析】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
    【常见模型】

    常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.
    例7.(2022·绵阳市·八年级专题练习)在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.
    (1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.
    (2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?
    答:   .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).
    (3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.   

    变式7. (2022·南昌市心远中学八年级期中)在图1、图2,图3中.点E、F分别是四边形边上的点;下面请你根据相应的条件解决问题.
    特例探索:(1)在图1中,四边形为正方形(正方形四边相等,四个内角均为直角),,延长至G,使.则__________.
    在图2中,,,,,,;则______.

    归纳证明:(2)在图3中,,.且,请你观察(1)中的结果,猜想图3中线段之间的数量关系,用等式表示出来,并利用图3证明你发现的关系式.
    实际应用:(3)图4是某公路筑建工程平面示意图,指挥中心设在O处,A处、B处分别是甲、乙两公路起点,它们分别在指挥中心的北偏东和南偏东的方向上.且A、B两处分别与指挥中心O的距离相等:其中甲公路是从A处开始沿正东方向筑建,乙公路是从B处开始沿北偏东40方向筑建:甲、乙两公路的路基筑建速度分别是每天150米、180米,当两公路同时开工后的第五天收工时,分别筑建到C、D处,经测量.试求C与D两处之间的距离.







    模型八:截长补短模型
    【模型分析】截长补短的方法适用于求证线段的和差倍分关系。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。
    【模型图示】
    (1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。
    例:如图,求证BE+DC=AD

    方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
    (2)补短:将短线段延长,证与长线段相等
    例:如图,求证BE+DC=AD
    方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE
    例8.(2021·广西玉林市·八年级期末)在中,,点D、E分别在、上,连接、和;并且有,.(1)求的度数;(2)求证:.

    变式8.(2022·四川南充·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
    思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
    方法1:在上截取,连接,得到全等三角形,进而解决问题;
    方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
    结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;

    模型九:倍长中线模型
    【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
    【常见模型】

    例9.(2021·河南新乡学院附属中学八年级月考)如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是( )

    A.1<AD<6 B.1<AD<4 C.2<AD<8 D.2<AD<4
    变式9.(2021·湖北八年级期末)在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.
    (1)如图1,是的中线,求的取值范围.我们可以延长到点,使,连接,易证,所以.接下来,在中利用三角形的三边关系可求得的取值范围,从而得到中线的取值范围是 ;
    (2)如图2,是的中线,点在边上,交于点且,求证:;
    (3)如图3,在四边形中,,点是的中点,连接,且,试猜想线段之间满足的数量关系,并予以证明.



    课后训练:
    1.(2022·陕西西安·七年级期末)如图,AC与BD交于点O,连接AB、AD、BC,∠D=∠C.
    (1)要使,只需添加一个条件是______.
    (2)根据(1)中你所添加的条件,你能说明△ABD与△BAC全等吗?


    2.(2022·山东青岛·七年级期末)已知:.
    (1)求证:;(2)若,求的度数.


    3.(2022·四川成都·七年级期末)在Rt△ABC中,∠C=90°,AC=BC,如图1所示,BC边在直线l上,若Rt△ABC绕点C沿顺时针方向旋转α,过点A、B分别作l的垂线,垂足分别为点D、E.

    (1)当0<α<90°时,证明:△ACD≌△CBE,并探究线段AD、BE和DE的数量关系并说明理由;
    (2)当90°<α<180°,且α≠135°时,探究线段AD、BE和DE的数量关系(直接写出结果).




    4.(2021·陕西榆林·八年级期末)如图,在中,∠C=90°,AC=10,BC=5,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且始终有PQ=AB,问P点运动到AC上什么位置(包括端点)时才能和全等,并说明理由.

    5.(2022·陕西榆林·七年级期末)如图,于点,点在直线上,.
    (1)如图1,若点在线段上,判断与的数量关系和位置关系,并说明理由;
    (2)如图2,若点在线段的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.

    6.(2022·辽宁·阜新实验中学七年级期末)问题背景:
    如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.


    (1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;(直接写结论,不需证明)
    探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,(1)中结论是否仍然成立,并说明理由;
    (3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.






    7.(2022·涿州市实验中学八年级期中)在中,于点D,点E为AD上一点,连接CE,CE=AB,ED=BD.(1)求证:;(2)若,则的度数为 .


    8.(2021·广西百色市·八年级期末)如图,已知点是的中点,∥,且.
    (1)求证:△ACD≌△CBE.(2)若,求∠B的度数.


    9.(2021春•雁塔区校级期中)如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.



    10.(2021·江苏徐州市·八年级期末)已知:如图,点C是线段AB的中点,CD=CE,∠ACD=∠BCE,求证:
    (1)△ADC≌△BEC;(2)DA=EB.


    11.(2022·福建厦门市·厦门双十中学八年级月考)已知:如图,C为线段BE上一点,AB//DC,AB=EC,BC=CD. 求证:∠A=∠E .




    12.(2022•历下区期中)CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠β.
    (1)若直线CD经过∠BCA内部,且E、F在射线CD上,
    ①若∠BCA=90°,∠β=90°,例如图1,则BE   CF,EF   |BE﹣AF|.(填“>”,“<”,“=”);
    ②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如图2,①中的两个结论还成立吗?并说明理由;
    (2)如图3,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).

    13.(2021·湖北鄂州市·八年级期末)将的直角顶点置于直线上,,分别过点 、作直线的垂线,垂足分别为点、,连接.若, .求的面积.

    14.(2021·河南商丘市·九年级期末)如图(1),已知中,,;是过的一条直线,且,在的异侧,于,于.(1)求证:;(2)若直线绕点旋转到图(2)位置时(),其余条件不变,问与,的数量关系如何?请给予证明.(3)若直线绕点旋转到图(3)位置时(),其余条件不变,问与,的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线在不同位置时与,的位置关系.


    15.(2021·河南濮阳市·八年级期末)已知:D,A,E三点都在直线m上,在直线m的同一侧作,使,连接BD,CE.(1)如图①,若,,,求证;
    (2)如图②,若,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.


    16.(2022·河南许昌市·九年级期中)问题发现:(1)如图1,已知为线段上一点,分别以线段,为直角边作等腰直角三角形,,,,连接,,线段,之间的数量关系为______;位置关系为_______.
    拓展探究:(2)如图2,把绕点逆时针旋转,线段,交于点,则与之间的关系是否仍然成立?请说明理由.


    17.(2022·江西上饶市·南屏中学八年级月考)如图, AB=CB, BD=BE, ∠ABC=∠DBE=a.
    (1)当a=60°, 如图①则,∠DPE的度数______________
    (2)若△BDE绕点B旋转一定角度,如图②所示,求∠DPE(用a表示)


    18.(2022·辽宁丹东市·七年级期末)已知:如图1,在和中,,,.(1)证明.(2)如图2,连接和,,与分别交于点和,,求的度数.(3)在(2)的条件下,若,直接写出的度数.



    19.(2022·河南省鹤壁市湘江中学八年级月考)(1)作图发现:如图1,已知,小涵同学以、为边向外作等边和等边,连接,.这时他发现与的数量关系是 .
    (2)拓展探究:如图2,已知,小涵同学以、为边向外作正方形和正方形,连接,,试判断与之间的数量关系,并说明理由.



    20.(2022·河南新乡市·八年级期中)已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.

    (1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:△ABE≌△CBF.(2)当∠MBN绕点B旋转到AE≠CF时,如图2,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.(3)当∠MBN绕点B旋转到图3这种情况下,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.





    21.(2021·江苏八年级期末)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.











    22.(2021·山东八年级期末)(1)方法呈现:
    如图①:在中,若,,点D为BC边的中点,求BC边上的中线AD的取值范围.
    解决此问题可以用如下方法:延长AD到点E使,再连接BE,可证,从而把AB、AC,集中在中,利用三角形三边的关系即可判断中线AD的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;
    (2)探究应用:如图②,在中,点D是BC的中点,于点D,DE交AB于点E,DF交AC于点F,连接EF,判断与EF的大小关系并证明;
    (3)问题拓展:如图③,在四边形ABCD中,,AF与DC的延长线交于点F、点E是BC的中点,若AE是的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.



    相关试卷

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题19.3一次函数与几何图形八大题型专项讲练(原卷版+解析): 这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题19.3一次函数与几何图形八大题型专项讲练(原卷版+解析),共100页。试卷主要包含了一次函数与等腰三角形, 一次函数与直角三角形, 一次函数与等腰直角三角形,一次函数与全等三角形,一次函数与平行四边形,一次函数与特殊的平行四边形,一次函数与面积问题, 一次函数中的探究规律问题等内容,欢迎下载使用。

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题19.2一次函数的应用题常见题型专题讲练(原卷版+解析): 这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题19.2一次函数的应用题常见题型专题讲练(原卷版+解析),共58页。试卷主要包含了 行程类问题,直线中=行驶速度;3,轴上的点为两人的相遇点;4,的函数关系如图2所示.,2 一次函数应用题 专项讲练等内容,欢迎下载使用。

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题17.1勾股定理重难点题型12个(原卷版+解析): 这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题17.1勾股定理重难点题型12个(原卷版+解析),共85页。试卷主要包含了勾股树与面积问题再探究,赵爽弦图相关问题,勾股定理的应用-梯子滑动问题,勾股定理的应用-台风和爆破问题,勾股定理的应用-位置问题, 勾股定理的应用-速度问题, 网格中的勾股定理等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023人教版八年级数学上册重难题型全归纳及技巧提升专项精练 专题12.1 全等三角形九大基本模型 专项讲练(原卷+解析卷)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map