人教A版 (2019)必修 第二册9.2 用样本估计总体教案设计
展开
这是一份人教A版 (2019)必修 第二册9.2 用样本估计总体教案设计,共10页。教案主要包含了类题通法,巩固练习1,巩固练习2,巩固练习3,设计意图等内容,欢迎下载使用。
《9.2.4 总体离散程度的估计》 教学设计本小节内容选自《普通高中数学必修第二册》人教A版(2019)第九章《统计》的第二节《用样本估计总体》。以下是本节的课时安排:9.2用样本估计总体 课时内容9.2.1总体取值规律的估计9.2.2总体百分位数的估计9.2.3总体集中趋势的估计9.2.4总体离散程度的估计所在位置教材第192页教材第201页教材第203页教材第209页新教材内容分析本节课主要内容是学习画样本数据的频率分布表和频率分布直方图, 并利用频率分布直方图对总体进行分布规律的估计.本节内容是抽样的基础上,对统计的数据进行分析,同时,利用样本数据估计总体情况,主要针对频率分布表和频率分布直方图进行统计分析的学习。本节内容是在根据样本的数据特征来估计总体的分布情况,本节内容主要根据平均数、中位数、众数来估计总体的集中趋势。本节内容是在抽样的基础上,根据样本数据对总体进行估计,本节主要估计总体的离散程度,同时,对比得出更好的估计离散程度的方法。核心素养培养通过对统计图表的学习,培养学生数学抽象素养;通过应用统计图表估计总体的取值规律,培养学生数据分析素养.通过对百分位数概念的学习,培养学生数学抽象素养;通过计算样本的百分位数,培养学生数学运算素养.通过对平均数、中位数、众数概念的学习,培养学生数学抽象素养;通过利用平均数、中位数、众数估计总体的集中趋势,培养学生直观想象素养.通过对标准差、方差、极差概念的学习,培养学生数学抽象素养;通过利用标准差、方差、极差估计总体的离散程度,培养学生数据分析素养.教学主线用样本估计总体 在初中已经学习理解了“方差与标准差概念”的基础上,学习理解方差的性质。学会分层随机抽样样本的方差的计算.帮助学生逐步适应复杂的数学符号.体会利用样本估计总体的思想.在数据的整理与计算的过程中养成耐心、细致、认真的习惯,学会把知识应用于生活.提高数据分析能力.1.掌握方差和标准差,利用方差和标准差估计总体的离散程度,培养数据分析的核心素养;2、通过样本标准差等数据直观估计总体的离散程度,能够正确计算样本的标准差或方差,提升数学运算的核心素养。1.重点:求样本数据的方差、标准差、极差2.难点:用样本平均数和样本标准差估计总体。 (一)新知导入甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.经过计算可知甲、乙的命中环数的平均数都是7环.【问题】若从二人中选一人去和兄弟部队参加射击大赛,只用平均数能否作出选择?【提示】不能.平均数只能说明二人的平均水平相同,还要用方差来判断谁的射击水平更稳定.(二)总体离散程度的估计知识点一 一组数据x1,x2,…,xn的方差和标准差数据x1,x2,…,xn的方差为=,标准差为.知识点二 总体方差和标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,YN,总体的平均数为,则称S2=为总体方差,S=为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出现的频数为fi(i=1,2,…,k),则总体方差为S2=.知识点三 样本方差和标准差如果一个样本中个体的变量值分别为y1,y2,…,yn,样本平均数为,则称s2=为样本方差,s=为样本标准差.知识点四 标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.知识点五 分层随机抽样的方差设样本容量为n,平均数为,其中两层的个体数量分别为n1,n2,两层的平均数分别为1,2,方差分别为s,s,则这个样本的方差为s2=[s+(1-)2]+[s+(2-)2].【做一做】某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为________;(2)命中环数的标准差为________.解析:(1)==7.(2)∵s2=[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s=2.答案:(1)7 (2)2【思考】如何理解方差与标准差的概念?【提示】 (1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.(2)标准差、方差的取值范围:[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.(3)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.【辩一辩】判断(正确的打“√”,错误的打“×”)1.计算分层随机抽样的均值与方差时,必须已知各层的权重.(√)2.若一组数据的值大小相等,没有波动变化,则标准差为0.(√)3.标准差越大,表明各个样本数据在样本平均数周围越集中;标准差越小,表明各个样本数据在样本平均数周围越分散.(×)(三)典型例题1.方差、标准差的计算例1.甲、乙两机床同时加工直径为100 cm的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103乙:99 100 102 99 100 100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.解:(1)甲=(99+100+98+100+100+103)=100,乙=(99+100+102+99+100+100)=100.s=[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=,s=[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均值相同,又s>s,所以乙机床加工零件的质量更稳定.【类题通法】用样本的标准差、方差估计总体的方法用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.在实际应用中,常常把平均数与标准差结合起来进行决策.在平均值相等的情况下,比较方差或标准差以确定稳定性.【巩固练习1】对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们每次的最大速度(m/s)如下:甲:27,38,30,37,35,31乙:33,29,38,34,28,36根据以上数据,试判断他们谁的成绩比较稳定.解:甲=×(27+38+30+37+35+31)=33,s=×[(27-33)2+(38-33)2+…+(31-33)2]=×94≈15.7,乙=×(33+29+38+34+28+36)==33,s=×[(33-33)2+(29-33)2+…+(36-33)2]=×76≈12.7.所以甲=乙,s>s.这说明甲、乙两运动员的最大速度的平均值相同,但乙的成绩比甲的稳定.2.分层随机抽样的方差例2.甲、乙两支田径队的体检结果为:甲队体重的平均数为60 kg,方差为200,乙队体重的平均数为70 kg,方差为300,又已知甲、乙两队的队员人数之比为1∶4,那么甲、乙两队全部队员的平均体重和方差分别是多少?解:由题意可知甲=60,甲队队员在所有队员中所占权重为=,乙=70,乙队队员在所有队员中所占权重为=,则甲、乙两队全部队员的平均体重为=×60+×70=68(kg),甲、乙两队全部队员的体重的方差为s2=[200+(60-68)2]+[300+(70-68)2]=296.【类题通法】计算分层随机抽样的方差s2的步骤:(1)确定1,2,s,s,(2)确定;(3)应用公式s2=[s+(1-)2]+[s+(2-)2],计算s2.【巩固练习2】已知某省二、三、四线城市数量之比为1∶3∶6,2019年8月份调查得知该省所有城市房产均价为1.2万元/平方米,方差为20,二、三、四线城市的房产均价分别为2.4万元/平方米,1.8万元/平方米,0.8万元/平方米,三、四线城市房价的方差分别为10,8,则二线城市房价的方差为________.【解析】设二线城市的房价的方差为s2,由题意可知20=[s2+(1.2-2.4)2]+[10+(1.2-1.8)2]+[8+(1.2-0.8)2],解得s2=118.52,即二线城市房价的方差为118.52.【答案】118.52 3.数字特征的综合应用例3.在一次科技知识竞赛中,某学校的两组学生的成绩如下表:请根据你所学过的统计知识,判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.分数5060708090100人数甲组251013146乙组441621212 解:(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的众数比较看,甲组成绩好些.(2)甲=(50×2+60×5+70×10+80×13+90×14+100×6)=×4 000=80,乙=(50×4+60×4+70×16+80×2+90×12+100×12)=×4 000=80.s=[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s=[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵甲=乙,s<s,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,所以乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.【类题通法】数据分析的要点(1)要正确处理此类问题,首先要抓住问题中的关键词语,全方位地进行必要的计算、分析,而不能习惯性地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本例的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.(2)在进行数据分析时,不同的标准没有对和错的问题,也不存在唯一解的问题,而是根据需要来选择“好”的决策,至于决策的好坏,是根据提出的标准而定的.【巩固练习3】某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.经预测,跳高1.65 m就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70 m方可获得冠军呢?解:甲的平均成绩和方差如下:甲=(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)=1.69,s=[(1.70-1.69)2+(1.65-1.69)2+…+(1.67-1.69)2]=0.000 6.乙的平均成绩和方差如下:乙=(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)=1.68,s=[(1.60-1.68)2+(1.73-1.68)2+…+(1.75-1.68)2]=0.003 15.显然,甲的平均成绩高于乙的平均成绩,而且甲的方差小于乙的方差,说明甲的成绩比乙稳定.由于甲的平均成绩高于乙,且成绩稳定,所以若跳高1.65 m就很可能获得冠军,应派甲参赛.在这8次选拔赛中乙有5次成绩在1.70 m以上,虽然乙的平均成绩不如甲,成绩的稳定性也不如甲,但成绩突破1.70 m的可能性大于甲,所以若跳高1.70 m方可获得冠军,应派乙参赛.(四)操作演练 素养提升1.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.平均数 B.标准差 C.众数 D.中位数2.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( )A.1 B. C. D.23.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A.8 B.15 C.16 D.324.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示: 甲乙丙丁平均环数8.38.88.88.7方差s23.53.62.25.4 若要从这四人中选择一人去参加该运动会射击项目比赛,最佳人选是________(填“甲”“乙”“丙”“丁”中的一个).答案:1.B 2.B 3.C 4.丙 【设计意图】通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。(五)课堂小结,反思感悟 1.知识总结:2.学生反思:(1)通过这节课,你学到了什么知识? (2)在解决问题时,用到了哪些数学思想? 【设计意图】通过总结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。完成教材:第213页 练习 第1,2,3,4,5题 第214页 习题9.2 第2,4,8,10,11题
相关教案
这是一份高中数学人教A版 (2019)必修 第二册9.2 用样本估计总体教学设计,共4页。
这是一份人教A版 (2019)必修 第二册9.2 用样本估计总体教案及反思,共4页。
这是一份高中数学9.2 用样本估计总体教案及反思,共6页。教案主要包含了总体集中趋势的估计,总体离散程度的估计,典例分析,巩固练习等内容,欢迎下载使用。