![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第1页](http://img-preview.51jiaoxi.com/2/3/13517636/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第2页](http://img-preview.51jiaoxi.com/2/3/13517636/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第3页](http://img-preview.51jiaoxi.com/2/3/13517636/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第4页](http://img-preview.51jiaoxi.com/2/3/13517636/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第5页](http://img-preview.51jiaoxi.com/2/3/13517636/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第6页](http://img-preview.51jiaoxi.com/2/3/13517636/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第7页](http://img-preview.51jiaoxi.com/2/3/13517636/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![12.3角平分线的性质-【高效课堂】2022-2023学年八年级数学上学期同步课件(人教版)第8页](http://img-preview.51jiaoxi.com/2/3/13517636/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
初中数学人教版八年级上册12.3 角的平分线的性质图片课件ppt
展开
这是一份初中数学人教版八年级上册12.3 角的平分线的性质图片课件ppt,共24页。PPT课件主要包含了符号语言表示,角的平分线的性质,ABAB,BCBD,∴∠CAB∠DAB,角的平分线的判定,你能得出什么结论呢,同理PEPF,∴PDPEPF,三角形的角平分线等内容,欢迎下载使用。
1、会用尺规作图法作一个角的平分线,知道作法的理论依据.2、探究并证明角平分线的性质.3、会用角平分线的性质解决实际问题.
如图,是一个角平分仪,其中 AB=AD,BC=DC. 将点 A 放在角的顶点,AB 和 AD 沿着角的两边放下,沿 AC 画一条射线 AE,AE 就是角平分线,你能说明它的道理吗?
证明:在△ACD和△ACB中, AD=AB(已知), DC=BC(已知) , CA=CA(公共边), ∴ △ACD≌ △ACB(SSS). ∴∠CAD=∠CAB(全等三角形的对应角相等). ∴AC平分∠DAB(角平分线的定义).
从利用平分角的仪器画角的平分线中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?
如图,已知:∠AOB.求作:∠AOB的平分线.
作法:(1)以点O为圆心,适当长为半径画弧线,交OA于点N,交OB于点M. (2)分别以M、N为圆心,大于 MN的长为半径画弧,两弧在∠AOB的内部相交于点C. (3)画射线OC,射线OC即为所求.
你能证明OC是∠AOB的角平分线吗?
如图,任意作一个角∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA、OB的垂线,分别记垂足为D、E,测量PD、PE并作比较,你得到什么结论?在OC上再取几个点试一试.
经过测量发现,PD=PE,在OC上再取几个点,都能得到同样的结论.
通过以上测量,你发现了角的平分线的什么性质?
通过动手实验、观察比较,我们发现“角的平分线上的点到角的两边的距离相等”,你能通过严格的逻辑推理证明这个结论吗?
已知:∠AOC = ∠BOC,点 P 在 OC 上,PD⊥OA,PE⊥OB, 垂足分别为 D,E. 求证:PD = PE.
证明:∵PD⊥OA,PE⊥OB. ∴∠PDO=∠PEO= 90°. 在△PDO 和△PEO 中, ∠PDO=∠PEO, ∠AOC=∠BOC, OP=OP, ∴△PDO ≌ △PEO(AAS). ∴PD=PE.
角的平分线上的点到角的两边的距离相等.
∵OC 是∠AOB 的平分线,PD⊥OA,PE⊥OB,∴PD=PE (角的平分线上的点到角的两边的距离相等).
由角的平分线的性质的证明过程,你能概括出证明几何命题的一般步骤吗?
(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程.
思考 如图,要在S区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m.这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
解:在Rt△ABC与Rt△ABD中:
∴ Rt△ABC ≌ Rt△ABD(HL).
即点B在∠CAD的角平分线上
角的内部到角的两边的距离相等的点在角的平分线上.
例:如图,△ABC的角平分线BM,CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
证明:过点P作PD⊥AB交于点D,PE⊥BC交于点E,PF⊥AC交于点F.
∵ BM是△ABC的角平分线,点P在BM上
∴ PD=PE(角平分线上的点到角两边的 距离相等)
∴点P到三边AB、BC、CA的距离相等.
想一想,点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?
想一想,点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?
∵ PD⊥AB,PF⊥AC,PD=PF
∴ P在∠A的平分线上
结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.
如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别为C,D,则下列结论错误的是( )A.PC=PD B.∠CPO=∠DOP C.∠CPO=∠DPO D.OC=OD
证明:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB, ∴PC=PD. 在Rt△OCP和Rt△ODP中, OP=OP, PC=PD, ∴Rt△OCP≌Rt△ODP(HL). ∴ ∠CPO=∠DPO,OC=OD.
1.如图,∠AOB=60°,CD⊥OA于D, CE⊥OB于E,且CD=CE,则∠DOC=________.
2.判断正误,并说明理由:(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB ,则PE=PF.( )(2)如图2,P是∠AOB的平分线OC上的一点,E,F分别在OA,OB上,则PE=PF.( )(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3 cm,则P到OB的距离为3 cm.( )
1.直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 ( )
A. 一处 B. 两处
C. 三处 D. 四处
分析: 由于没有限制在何处选址,故要求的地址共有四处.
2.如图,△ABC 中,∠C = 90°,AD 是△ABC 的角平分线,DE⊥AB 于 E,F 在 AC 上 BD=DF.求证:CF=EB.
证明:∵AD 平分∠CAB,DE⊥AB,∠C= 90°(已知), ∴CD=DE (角的平分线的性质). 在Rt △CDF 和 Rt△EDB 中, CD=DE (已证),DF=DB(已知), ∴ Rt△CDF ≌ Rt△EDB(HL). ∴ CF=EB (全等三角形对应边相等).
3.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB,垂足为E,若AB=8cm,则△DEB的周长为( ) A.10cm B.7cm C.8cm D.不能确定
角的平分线上的点到角的两边的距离相等.
证明:过点E作EF⊥AD于点F, ∵∠B=∠C=90°, ∴DC⊥EC,EB⊥AB. ∵DE平分∠ADC, ∴EC=EF. ∵E是BC的中点, ∴EC=EB. ∵EF⊥AD,EB⊥AB, ∴点E在∠BAD的平分线上,即AE是∠DAB的平分线.
如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC.求证:AE是∠DAB的平分线.
相关课件
这是一份初中数学人教版八年级上册12.3 角的平分线的性质教课ppt课件,共28页。PPT课件主要包含了角平分线的性质,知识回顾,学习目标,课堂导入,新知探究,跟踪训练,随堂练习,三角形全等的性质,角的平分线的判定,角平分线的判定等内容,欢迎下载使用。
这是一份初中人教版第十二章 全等三角形12.3 角的平分线的性质图文课件ppt,共28页。PPT课件主要包含了复习备用,几何语言,复习引入,学习目标,重点难点,新知探究,合作探究,归纳总结,学以致用,公共边等内容,欢迎下载使用。
这是一份八年级上册12.3 角的平分线的性质授课课件ppt,共15页。PPT课件主要包含了课堂小结,布置作业等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)