![高中数学必修一 《3.3 幂函数》名师优质课导学案第1页](http://img-preview.51jiaoxi.com/3/3/13451580/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学必修一 《3.3 幂函数》名师优质课导学案第2页](http://img-preview.51jiaoxi.com/3/3/13451580/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学必修一 《3.3 幂函数》名师优质课导学案第3页](http://img-preview.51jiaoxi.com/3/3/13451580/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中人教A版 (2019)3.3 幂函数学案
展开
这是一份高中人教A版 (2019)3.3 幂函数学案,共13页。学案主要包含了幂函数的概念,幂函数的图象及应用,比较幂值的大小等内容,欢迎下载使用。
3.3 幂函数
学习目标 1.了解幂函数的概念.2.掌握y=xα的图象与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.
知识点一 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
知识点二 五个幂函数的图象与性质
1.在同一平面直角坐标系内函数(1)y=x;(2)y=;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.
2.五个幂函数的性质
y=x
y=x2
y=x3
y=x-1
定义域
R
R
R
[0,+∞)
{x|x≠0}
值域
R
[0,+∞)
R
[0,+∞)
{y|y≠0}
奇偶性
奇
偶
奇
非奇非偶
奇
单调性
增
在[0,+∞) 上增,
在(-∞,0] 上减
增
增
在(0,+∞)上减,
在(-∞,0)上减
知识点三 一般幂函数的图象特征
1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).
2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当01).其中幂函数的个数为( )
A.1 B.2 C.3 D.4
答案 B
解析 幂函数有①⑥两个.
(2)已知是幂函数,求m,n的值.
考点 幂函数的概念
题点 由幂函数定义求参数值
解 由题意得
解得或
所以m=-3或1,n=.
反思感悟 判断函数为幂函数的方法
(1)自变量x前的系数为1.
(2)底数为自变量x.
(3)指数为常数.
跟踪训练1 (1)已知幂函数f(x)=k·xα的图象过点,则k+α等于( )
A. B.1 C. D.2
答案 C
解析 由幂函数的定义知k=1.
又f =,所以α=,
解得α=,从而k+α=.
(2)已知f(x)=ax2a+1-b+1是幂函数,则a+b等于( )
A.2 B.1 C. D.0
答案 A
解析 因为f(x)=ax2a+1-b+1是幂函数,
所以a=1,-b+1=0,
即a=1,b=1,则a+b=2.
二、幂函数的图象及应用
例2 (1)已知幂函数f(x)=xα的图象过点P,试画出f(x)的图象并指出该函数的定义域与单调区间.
解 因为f(x)=xα的图象过点P,
所以f(2)=,即2α=,
得α=-2,即f(x)=x-2,
f(x)的图象如图所示,
定义域为(-∞,0)∪(0,+∞),单调减区间为(0,+∞),单调增区间为(-∞,0).
(2)下列关于函数y=xα与y=αx的图象正确的是( )
答案 C
反思感悟 (1)幂函数图象的画法
①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y=xα在第一象限内的图象.
②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f(x)在其他象限内的图象.
(2)解决与幂函数有关的综合性问题的方法
首先要考虑幂函数的概念,对于幂函数y=xα(α∈R),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.
跟踪训练2 (1)如图所示,C1,C2,C3为幂函数y=xα在第一象限内的图象,则解析式中的指数α依次可以取( )
A.,-2,
B.-2,,
C.-2,,
D.,,-2
答案 C
(2)在同一坐标系内,函数y=xa(a≠0)和y=ax-的图象可能是( )
考点 幂函数的图象
题点 幂函数有关的知图选式问题
答案 C
解析 选项A中,幂函数的指数a1,则直线y=ax-应为增函数,B错误;
选项D中,幂函数的指数a0,直线y=ax-在y轴上的截距为正,D错误.
三、比较幂值的大小
例3 比较下列各组数的大小.
(1)0.5与0.5;
(2)-1与-1;
(3)与.
解 (1)因为幂函数y=x0.5在(0,+∞)上是单调递增的,
又>,所以0.5>0.5.
(2)因为幂函数y=x-1在(-∞,0)上是单调递减的,
又--1.
(3)因为在(0,+∞)上是单调递增的,
所以=1,
又在(0,+∞)上是单调递增的,
所以=1,所以.
反思感悟 此类题在构建函数模型时要注意幂函数的特点:指数不变.比较大小的问题主要是利用函数的单调性,特别是要善于应用“搭桥”法进行分组,常数0和1是常用的中间量.
跟踪训练3 比较下列各组数的大小:
(1)和;
(2),和.
解 (1)函数y=在(0,+∞)上为减函数,
又3
相关学案
这是一份高中数学人教A版 (2019)必修 第一册1.1 集合的概念导学案及答案,共5页。学案主要包含了集合的基本概念,集合的表示方法, 集合的表示方法等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第一册3.3 幂函数学案,文件包含正文docx、答案docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。
这是一份必修 第一册3.3 幂函数学案设计,共9页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)