|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届太原市中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2022届太原市中考数学仿真试卷含解析01
    2022届太原市中考数学仿真试卷含解析02
    2022届太原市中考数学仿真试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届太原市中考数学仿真试卷含解析

    展开
    这是一份2022届太原市中考数学仿真试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.的算术平方根为( )
    A. B. C. D.
    2.等腰三角形的一个外角是100°,则它的顶角的度数为(  )
    A.80° B.80°或50° C.20° D.80°或20°
    3.下列图形中,不是中心对称图形的是(  )
    A.平行四边形 B.圆 C.等边三角形 D.正六边形
    4.如图是某个几何体的展开图,该几何体是(  )

    A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
    5.若数a,b在数轴上的位置如图示,则(  )

    A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0
    6.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
    型号(厘米)
    38
    39
    40
    41
    42
    43
    数量(件)
    25
    30
    36
    50
    28
    8
    商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
    A.平均数 B.中位数 C.众数 D.方差
    7.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为(  )

    A.9cm B.13cm C.16cm D.10cm
    8.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    9.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(  )

    A. B. C. D.
    10.下列代数运算正确的是(  )
    A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3•x2=x5
    11.化简的结果是( )
    A.±4 B.4 C.2 D.±2
    12.一元二次方程(x+2017)2=1的解为( )
    A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.

    14.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.

    15.点A(-2,1)在第_______象限.
    16.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为    . 

    17.抛物线向右平移1个单位,再向下平移2个单位所得抛物线是__________.
    18.如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)计算下列各题:
    (1)tan45°−sin60°•cos30°;
    (2)sin230°+sin45°•tan30°.
    20.(6分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
    (1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
    (2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

    21.(6分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.

    22.(8分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).
    (1)求抛物线的解析式;
    (2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;
    (3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.

    23.(8分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为   件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
    24.(10分)计算:解不等式组,并写出它的所有整数解.
    25.(10分)(问题情境)
    张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

    小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
    [变式探究]
    如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
    请运用上述解答中所积累的经验和方法完成下列两题:
    [结论运用]
    如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
    [迁移拓展]
    图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
    26.(12分)已知:如图,∠ABC,射线BC上一点D.
    求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.

    27.(12分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
    (1)求抛物线的解析式,并直接写出点D的坐标;
    (2)当△AMN的周长最小时,求t的值;
    (3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    分析:先求得的值,再继续求所求数的算术平方根即可.
    详解:∵=2,
    而2的算术平方根是,
    ∴的算术平方根是,
    故选B.
    点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
    2、D
    【解析】
    根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.
    【详解】
    ∵等腰三角形的一个外角是100°,
    ∴与这个外角相邻的内角为180°−100°=80°,
    当80°为底角时,顶角为180°-160°=20°,
    ∴该等腰三角形的顶角是80°或20°.
    故答案选:D.
    【点睛】
    本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.
    3、C
    【解析】
    根据中心对称图形的定义依次判断各项即可解答.
    【详解】
    选项A、平行四边形是中心对称图形;
    选项B、圆是中心对称图形;
    选项C、等边三角形不是中心对称图形;
    选项D、正六边形是中心对称图形;
    故选C.
    【点睛】
    本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
    4、A
    【解析】
    侧面为长方形,底面为三角形,故原几何体为三棱柱.
    【详解】
    解:观察图形可知,这个几何体是三棱柱.
    故本题选择A.
    【点睛】
    会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.
    5、D
    【解析】
    首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案.
    【详解】
    由数轴可知:a<0<b,a<-1,0 所以,A.a+b<0,故原选项错误;
    B. ab<0,故原选项错误;
    C.a-b<0,故原选项错误;
    D.,正确.
    故选D.
    【点睛】
    本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系.
    6、B
    【解析】
    分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
    详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
    故选:C.
    点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    7、A
    【解析】
    试题分析:由折叠的性质知,CD=DE,BC=BE.
    易求AE及△AED的周长.
    解:由折叠的性质知,CD=DE,BC=BE=7cm.
    ∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
    △AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
    故选A.
    点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    8、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    9、B
    【解析】
    试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积==10π .故选B.
    10、D
    【解析】
    分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.
    【详解】
    解:A. (x+1)2=x2+2x+1,故A错误;
    B. (x3)2=x6,故B错误;
    C. (2x)2=4x2,故C错误.
    D. x3•x2=x5,故D正确.
    故本题选D.
    【点睛】
    本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.
    11、B
    【解析】
    根据算术平方根的意义求解即可.
    【详解】
    4,
    故选:B.
    【点睛】
    本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.
    12、A
    【解析】
    利用直接开平方法解方程.
    【详解】
    (x+2017)2=1
    x+2017=±1,
    所以x1=-2018,x2=-1.
    故选A.
    【点睛】
    本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.
    【详解】
    解:连接AD交EF与点M′,连结AM.

    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=12,解得AD=1,
    ∵EF是线段AB的垂直平分线,
    ∴AM=BM.
    ∴BM+MD=MD+AM.
    ∴当点M位于点M′处时,MB+MD有最小值,最小值1.
    ∴△BDM的周长的最小值为DB+AD=2+1=2.
    【点睛】
    本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.
    14、18
    【解析】
    三角形的重心是三条中线的交点,根据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.
    【详解】
    ∵点G是△ABC的重心,

    ∵GB=3,EG=GC=4,BE=GA=5,
    ∴,即BG⊥CE,
    ∵CD为△ABC的中线,


    故答案为:18.
    【点睛】
    考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.
    15、二
    【解析】
    根据点在第二象限的坐标特点解答即可.
    【详解】
    ∵点A的横坐标-2<0,纵坐标1>0,
    ∴点A在第二象限内.
    故答案为:二.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    16、65°
    【解析】
    根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.
    【详解】
    根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,
    ∴∠CAD=25°;
    在△ADC中,∠C=90°,∠CAD=25°,
    ∴∠ADC=65°(直角三角形中的两个锐角互余);
    故答案是:65°.
    17、(或)
    【解析】
    将抛物线化为顶点式,再按照“左加右减,上加下减”的规律平移即可.
    【详解】
    解:化为顶点式得:,
    ∴向右平移1个单位,再向下平移2个单位得:

    化为一般式得:,
    故答案为:(或).
    【点睛】
    此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.
    18、4或4.
    【解析】
    ①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.
    【详解】
    ①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,

    则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
    设MN是BC的垂直平分线,
    则AM=AD=3,
    过E作EH⊥MN于H,
    则四边形AEHM是矩形,
    ∴MH=AE=2,
    ∵A′H=,
    ∴A′M=,
    ∵MF2+A′M2=A′F2,
    ∴(3-AF)2+()2=AF2,
    ∴AF=2,
    ∴EF==4;
    ②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,

    则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
    设MN是BC的垂直平分线,
    过A′作HG∥BC交AB于G,交CD于H,
    则四边形AGHD是矩形,
    ∴DH=AG,HG=AD=6,
    ∴A′H=A′G=HG=3,
    ∴EG==,
    ∴DH=AG=AE+EG=3,
    ∴A′F==6,
    ∴EF==4,
    综上所述,折痕EF的长为4或4,
    故答案为:4或4.
    【点睛】
    本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2).
    【解析】
    (1)原式=1﹣×=1﹣=;
    (2)原式=×+×=.
    【点睛】
    本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.
    20、(1)见解析;(2)见解析.
    【解析】
    试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
    (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
    试题解析:
    证明:(1)选取①②,
    ∵在△BEO和△DFO中,
    ∴△BEO≌△DFO(ASA);
    (2)由(1)得:△BEO≌△DFO,
    ∴EO=FO,BO=DO,
    ∵AE=CF,
    ∴AO=CO,
    ∴四边形ABCD是平行四边形.
    点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
    21、证明过程见解析
    【解析】
    要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.
    【详解】
    ∵BD⊥AC于点D,CE⊥AB于点E,
    ∴∠ADB=∠AEC=90°,
    在△ADB和△AEC中,

    ∴△ADB≌△AEC(ASA)
    ∴AB=AC,
    又∵AD=AE,
    ∴BE=CD.
    考点:全等三角形的判定与性质.
    22、 (1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-
    【解析】
    【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式; 
    (2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;
    (3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P ,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).
    【详解】(1)抛物线的解析式为y= (x-4)(x+2)=x2-x-4.
    (2)连接OM,设点M的坐标为.
    由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.
    S四边形OAMC=S△OAM+S△OCM
    =× 4m+× 4
    =-m2+4m+8=-(m-2)2+12.
    当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).
    (3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).
    连接CC1,过C1作C1D⊥AC于D,则CC1=2.
    ∵OA=OC,∠AOC=90°,∠CDC1=90°,
    ∴AC=4,CD=C1D=,AD=4-=3,
    设点P ,过P作PQ垂直于x轴,垂足为Q.
    ∵∠PAB=∠CAC1,∠AQP=∠ADC1,
    ∴△PAQ∽△C1AD,
    ∴,
    即 ,化简得 =(8-2n),
    即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),
    解得n=-,或n=-,或n=4(舍去),
    ∴点P的横坐标为-或-.
    【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.
    23、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.
    【解析】
    分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
    (2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.
    详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),
    故答案为180;
    (2)由题意得:
    y=(x﹣40)[200﹣10(x﹣50)]
    =﹣10x2+1100x﹣28000
    =﹣10(x﹣55)2+2250
    ∴每件销售价为55元时,获得最大利润;最大利润为2250元.
    点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.
    24、(1);(1)0,1,1.
    【解析】
    (1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果
    (1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可
    【详解】
    解:(1)原式=1﹣1× ,
    =7﹣.
    (1) ,
    解不等式①得:x≤1,
    解不等式②得:x>﹣1,
    ∴不等式组的解集是:﹣1<x≤1.
    故不等式组的整数解是:0,1,1.
    【点睛】
    此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键
    25、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
    【解析】
    小军的证明:连接AP,利用面积法即可证得;
    小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
    [变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
    小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
    [结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
    [迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
    【详解】
    小军的证明:
    连接AP,如图②

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP+S△ACP,
    ∴AB×CF=AB×PD+AC×PE,
    ∵AB=AC,
    ∴CF=PD+PE.
    小俊的证明:
    过点P作PG⊥CF,如图2,
    ∵PD⊥AB,CF⊥AB,PG⊥FC,
    ∴∠CFD=∠FDG=∠FGP=90°,
    ∴四边形PDFG为矩形,
    ∴DP=FG,∠DPG=90°,
    ∴∠CGP=90°,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠PGC=∠CEP,
    ∵∠BDP=∠DPG=90°,
    ∴PG∥AB,
    ∴∠GPC=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∴∠GPC=∠ECP,
    在△PGC和△CEP中

    ∴△PGC≌△CEP,
    ∴CG=PE,
    ∴CF=CG+FG=PE+PD;
    [变式探究]
    小军的证明思路:连接AP,如图③,

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP﹣S△ACP,
    ∴AB×CF=AB×PD﹣AC×PE,
    ∵AB=AC,
    ∴CF=PD﹣PE;
    小俊的证明思路:
    过点C,作CG⊥DP,如图③,
    ∵PD⊥AB,CF⊥AB,CG⊥DP,
    ∴∠CFD=∠FDG=∠DGC=90°,
    ∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠CGP=∠CEP,
    ∵CG⊥DP,AB⊥DP,
    ∴∠CGP=∠BDP=90°,
    ∴CG∥AB,
    ∴∠GCP=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵∠ACB=∠PCE,
    ∴∠GCP=∠ECP,
    在△CGP和△CEP中,

    ∴△CGP≌△CEP,
    ∴PG=PE,
    ∴CF=DG=DP﹣PG=DP﹣PE.
    [结论运用]
    如图④

    过点E作EQ⊥BC,
    ∵四边形ABCD是矩形,
    ∴AD=BC,∠C=∠ADC=90°,
    ∵AD=8,CF=3,
    ∴BF=BC﹣CF=AD﹣CF=5,
    由折叠得DF=BF,∠BEF=∠DEF,
    ∴DF=5,
    ∵∠C=90°,
    ∴DC==1,
    ∵EQ⊥BC,∠C=∠ADC=90°,
    ∴∠EQC=90°=∠C=∠ADC,
    ∴四边形EQCD是矩形,
    ∴EQ=DC=1,
    ∵AD∥BC,
    ∴∠DEF=∠EFB,
    ∵∠BEF=∠DEF,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    由问题情景中的结论可得:PG+PH=EQ,
    ∴PG+PH=1.
    ∴PG+PH的值为1.
    [迁移拓展]
    延长AD,BC交于点F,作BH⊥AF,如图⑤,

    ∵AD×CE=DE×BC,
    ∴,
    ∵ED⊥AD,EC⊥CB,
    ∴∠ADE=∠BCE=90°,
    ∴△ADE∽△BCE,
    ∴∠A=∠CBE,
    ∴FA=FB,
    由问题情景中的结论可得:ED+EC=BH,
    设DH=x,
    ∴AH=AD+DH=3+x,
    ∵BH⊥AF,
    ∴∠BHA=90°,
    ∴BH2=BD2﹣DH2=AB2﹣AH2,
    ∵AB=2,AD=3,BD=,
    ∴()2﹣x2=(2)2﹣(3+x)2,
    ∴x=1,
    ∴BH2=BD2﹣DH2=37﹣1=36,
    ∴BH=6,
    ∴ED+EC=6,
    ∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
    ∴DM=EM=AE,CN=EN=BE,
    ∴△DEM与△CEN的周长之和
    =DE+DM+EM+CN+EN+EC
    =DE+AE+BE+EC
    =DE+AB+EC
    =DE+EC+AB
    =6+2,
    ∴△DEM与△CEN的周长之和(6+2)dm.
    【点睛】
    此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
    26、作图见解析.
    【解析】
    由题意可知,先作出∠ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.
    【详解】
    ∵点P到∠ABC两边的距离相等,
    ∴点P在∠ABC的平分线上;
    ∵线段BD为等腰△PBD的底边,
    ∴PB=PD,
    ∴点P在线段BD的垂直平分线上,
    ∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,
    如图所示:
    【点睛】
    此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.
    27、(1)y=x2﹣x,点D的坐标为(2,﹣);(2)t=2;(3)M点的坐标为(2,0)或(6,0).
    【解析】
    (1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;
    (2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;
    (3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,△AME∽△COD,即|t-4|:4=|t2-t |:,当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标.
    【详解】
    解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得
    ,解得,
    ∴抛物线解析式为y=x2-x;
    ∵y=x2-x =-2) 2-;
    ∴点D的坐标为(2,-);
    (2)连接AC,如图①,

    AB==4,
    而OA=4,
    ∴平行四边形OCBA为菱形,
    ∴OC=BC=4,
    ∴C(2,2),
    ∴AC==4,
    ∴OC=OA=AC=AB=BC,
    ∴△AOC和△ACB都是等边三角形,
    ∴∠AOC=∠COB=∠OCA=60°,
    而OC=AC,OM=AN,
    ∴△OCM≌△ACN,
    ∴CM=CN,∠OCM=∠ACN,
    ∵∠OCM+∠ACM=60°,
    ∴∠ACN+∠ACM=60°,
    ∴△CMN为等边三角形,
    ∴MN=CM,
    ∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,
    当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,
    ∴t=2;
    (3)∵C(2,2),D(2,-),
    ∴CD=,
    ∵OD=,OC=4,
    ∴OD2+OC2=CD2,
    ∴△OCD为直角三角形,∠COD=90°,
    设M(t,0),则E(t,t2-t),
    ∵∠AME=∠COD,
    ∴当时,△AME∽△COD,即|t-4|:4=|t2-t |:,
    整理得|t2-t|=|t-4|,
    解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);
    当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,
    解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);
    综上所述,M点的坐标为(2,0)或(6,0).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.

    相关试卷

    2023年山西省太原市中考数学仿真模拟冲刺复习: 这是一份2023年山西省太原市中考数学仿真模拟冲刺复习,共7页。

    2022-2023学年陕西省太原市中考数学专项提升仿真模拟试题(3月4月)含解析: 这是一份2022-2023学年陕西省太原市中考数学专项提升仿真模拟试题(3月4月)含解析,共59页。试卷主要包含了选一选,填 空 题,解 答 题等内容,欢迎下载使用。

    2022-2023学年陕西省太原市中考数学专项提升仿真模拟试题(一模二模)含解析: 这是一份2022-2023学年陕西省太原市中考数学专项提升仿真模拟试题(一模二模)含解析,共55页。试卷主要包含了选一选,四象限B. ,解 答 题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map